Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Nutr ; 154(2): 435-445, 2024 02.
Article in English | MEDLINE | ID: mdl-38110181

ABSTRACT

BACKGROUND: Low-potassium intake is associated with a higher risk of type 2 diabetes and hypertension. Both conditions occur more frequently in Black populations, who also consume less potassium-rich foods. OBJECTIVES: Using metabolomics to identify dysregulated metabolic pathways associated with low-potassium excretion may procure more accurate entry points for nutritional prevention and intervention for type 2 diabetes and hypertension. METHODS: A total of 440 White and 350 Black adults from the African-PREDICT study (aged 20-30 y) were included. Twenty-four-hour blood pressure (BP) was measured. Potassium, sodium, and fasting glucose concentrations were analyzed in 24-h urine and plasma samples. Liquid chromatography-tandem mass spectrometry-based metabolomics included the analyses of amino acids and acylcarnitines in spot urine samples. RESULTS: Black participants had lower urinary potassium concentrations than Whites (36.6 compared with 51.1 mmol/d; P < 0.001). In White but not Black adults, urinary potassium correlated positively with 2-aminoadipic acid (2-AAA) (r = 0.176), C3-[propionyl]carnitine (r = 0.137), C4-[butyryl]carnitine (r = 0.169) and C5-[isovaleryl]carnitine (r = 0.167) in unadjusted and 2-AAA (r = 0.158) and C4-carnitine (r = 0.160) in adjusted analyses (all P < 0.05 and q < 0.05). Elevated C0-, C3-, and C5-carnitine in turn were positively associated with systolic BP (Black and White groups), diastolic BP (Black group), and glucose (White group) (all P < 0.05). CONCLUSIONS: Racial differences are an important consideration when investigating nutrient-metabolite relationships and the role thereof in cardiovascular disease. Only in White adults did urinary potassium associate with 2-AAA and short-chain acylcarnitines. These metabolites were positively related to BP and fasting plasma glucose concentrations. In White adults, the metabolomic profiles related to potassium excretion may contribute to BP regulation and glucose homeostasis. This trial was registered at clinicaltrials.gov as NCT03292094.


Subject(s)
Carnitine , Diabetes Mellitus, Type 2 , Hypertension , Adult , Humans , Blood Pressure/physiology , Carnitine/analogs & derivatives , Homeostasis , Hypertension/urine , Potassium/urine
2.
Viruses ; 16(2)2024 02 19.
Article in English | MEDLINE | ID: mdl-38400088

ABSTRACT

HIV-exposed, uninfected (HEU) children present with suboptimal growth and a greater susceptibility to infection in early life when compared to HIV-unexposed, uninfected (HUU) children. The reasons for these findings are poorly understood. We used a metabolomics approach to investigate the metabolic differences between pregnant women living with HIV (PWLWH) and their HEU infants compared to the uninfected and unexposed controls. Untargeted metabolomic profiling was performed using 1H-NMR spectroscopy on maternal plasma at 28 weeks' gestation and infant plasma at birth, 6/10 weeks, and 6 months. PWLWH were older but, apart from a larger 28 week mid-upper-arm circumference, anthropometrically similar to the controls. At all the time points, HEU infants had a significantly reduced growth compared to HUU infants. PWLWH had lower plasma 3-hydroxybutyric acid, acetoacetic acid, and acetic acid levels. In infants at birth, threonine and myo-inositol levels were lower in the HEU group while formic acid levels were higher. At 6/10 weeks, betaine and tyrosine levels were lower in the HEU group. Finally, at six months, 3-hydroxyisobutyric acid levels were lower while glycine levels were higher in the HEU infants. The NMR analysis has provided preliminary information indicating differences between HEU and HUU infants' plasma metabolites involved in energy utilization, growth, and protection from infection.


Subject(s)
HIV Infections , Infant , Infant, Newborn , Child , Humans , Female , Pregnancy , HIV Infections/prevention & control , Mothers , Betaine , Metabolomics
3.
Hypertens Res ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965426

ABSTRACT

The contrasting relationships of plant and animal protein intake with blood pressure (BP) may be partially attributed to the differential non-protein (e.g., saturated fat and fibre) and amino acid (AA) compositions. This study determined whether animal and plant protein intake were related to differential metabolomic profiles associated with BP. This study included 1008 adults from the African-PREDICT study (aged 20-30 years). Protein intake was determined using 24-h dietary recalls. Twenty-four-hour ambulatory BP was measured. Amino acids and acylcarnitines were analysed in spot urine samples using liquid chromatography-tandem mass spectrometry-based metabolomics. Participants with a low plant, high animal protein intake had higher SBP (by 3 mmHg, p = 0.011) than those with high plant, low animal protein intake (low-risk group). We found that the relationships of plant and animal protein intake with 24-h SBP were partially mediated by BMI and saturated fat intake, which were independently associated with SBP. Protein intake was therefore not related to SBP in multiple regression analysis after adjusting for confounders. In the low-risk group, methionine (Std. ß = -0.217; p = 0.034), glutamic acid (Std. ß = -0.220; p = 0.031), glycine (Std. ß = -0.234; p = 0.025), and proline (Std. ß = -0.266; p = 0.010) were inversely related to SBP, and beta-alanine (Std. ß = -0.277; p = 0.020) to DBP. Ultimately a diet high in animal and low in plant protein intake may contribute to higher BP by means of increased BMI and saturated fat intake. Conversely, higher levels of urinary AAs observed in adults consuming a plant rich diet may contribute to lower BP.

SELECTION OF CITATIONS
SEARCH DETAIL