Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Arch Virol ; 165(7): 1715-1717, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32417973

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is an important pathogen of medical and veterinary importance in the Americas. In this report, we present the complete genome sequences of five VEEV isolates obtained from pools of Culex (Melanoconion) gnomatos (4) or Culex (Melanoconion) pedroi (1) from Iquitos, Peru. Genetic and phylogenetic analyses showed that all five isolates grouped within the VEEV complex sister to VEEV IIIC and are members of subtype IIID. This is the first report of full-length genomic sequences of VEEV IIID.


Subject(s)
Culex/virology , Encephalitis Virus, Venezuelan Equine/isolation & purification , Encephalomyelitis, Venezuelan Equine/virology , Genome, Viral , Mosquito Vectors/virology , Animals , Base Sequence , Encephalitis Virus, Venezuelan Equine/classification , Encephalitis Virus, Venezuelan Equine/genetics , Encephalomyelitis, Venezuelan Equine/transmission , Genomics , Horses , Peru , Phylogeny
2.
Adv Exp Med Biol ; 1062: 303-318, 2018.
Article in English | MEDLINE | ID: mdl-29845541

ABSTRACT

The United States Army Medical Research Institute of Infectious Diseases (USAMRIID) possesses an array of expertise in diverse capabilities for the characterization of emerging infectious diseases from the pathogen itself to human or animal infection models. The recent Zika virus (ZIKV) outbreak was a challenge and an opportunity to put these capabilities to work as a cohesive unit to quickly respond to a rapidly developing threat. Next-generation sequencing was used to characterize virus stocks and to understand the introduction and spread of ZIKV in the United States. High Content Imaging was used to establish a High Content Screening process to evaluate antiviral therapies. Functional genomics was used to identify critical host factors for ZIKV infection. An animal model using the temporal blockade of IFN-I in immunocompetent laboratory mice was investigated in conjunction with Positron Emission Tomography to study ZIKV. Correlative light and electron microscopy was used to examine ZIKV interaction with host cells in culture and infected animals. A quantitative mass spectrometry approach was used to examine the protein and metabolite type or concentration changes that occur during ZIKV infection in blood, cells, and tissues. Multiplex fluorescence in situ hybridization was used to confirm ZIKV replication in mouse and NHP tissues. The integrated rapid response approach developed at USAMRIID presented in this review was successfully applied and provides a new template pathway to follow if a new biological threat emerges. This streamlined approach will increase the likelihood that novel medical countermeasures could be rapidly developed, evaluated, and translated into the clinic.


Subject(s)
Academies and Institutes , Zika Virus Infection/virology , Zika Virus/physiology , Academies and Institutes/trends , Animals , Biomedical Research , Humans , Zika Virus/genetics
3.
Am J Trop Med Hyg ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917780

ABSTRACT

Mayaro virus (MAYV) is an alphavirus endemic in many parts of Central and South America transmitted to humans by Aedes aegypti. Currently, there is no vaccine or treatment of Mayaro infection, and therefore it is essential to control transmission by reducing populations of Ae. aegypti. Unfortunately, Ae. aegypti are extremely difficult to control with traditional integrated vector management (IVM) because of factors such as growing resistance to a dwindling list of registered insecticides and cryptic immature and adult habitats. The sterile insect technique (SIT) by irradiation is gaining traction as a novel supplemental tool to IVM. The SIT is being used operationally to release large numbers of sterilized colony-reared male mosquitoes in an intervention area to overwhelm females in the natural population, eventually causing population decline because of high frequencies of unfertilized eggs. However, little is known about the effect of irradiation on vector competence for mosquito-borne viruses such as MAYV in females that may be accidentally reared, irradiated, and released alongside males. In this investigation, we exposed female Ae. aegypti pupae to radiation and evaluated vector competence after inoculation with MAYV. Infection and dissemination rates of irradiated (10 and 40 Gy) Ae. aegypti were higher than those of non-irradiated cohorts at 7 and 14 days after infection. Although these results indicate a need to maintain effective sex sorting prior to irradiation and release of Ae. aegypti, our results are consistent with several previous observations that vectorial capacity and vector competence are likely lower in irradiated than in nonirradiated females.

4.
Am J Trop Med Hyg ; 98(2): 432-444, 2018 02.
Article in English | MEDLINE | ID: mdl-29280428

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne member of the genus Flavivirus that has emerged since 2007 to cause outbreaks in Africa, Asia, Oceania, and most recently, in the Americas. Here, we used an isolate history as well as genetic and phylogenetic analyses to characterize three low-passage isolates representing African (ArD 41525) and Asian (CPC-0740, SV0127-14) lineages to investigate the potential phenotypic differences in vitro and in vivo. The African isolate displayed a large plaque phenotype (∼3-4 mm) on Vero and HEK-293 cells, whereas the Asian isolates either exhibited a small plaque phenotype (∼1-2 mm) or did not produce any plaques. In multistep replication kinetics in nine different vertebrate and insect cell lines, the African isolate consistently displayed faster replication kinetics and yielded ∼10- to 10,000-fold higher peak virus titers (infectious or RNA copies) compared with the Asian isolates. Oral exposure of Aedes aegypti mosquitoes with the African isolate yielded higher infection and dissemination rates compared with the Asian isolates. Infection of Ifnar1-/- mice with the African isolate produced a uniformly fatal disease, whereas infection with the Asian isolates produced either a delay in time-to-death or a significantly lower mortality rate. Last, the African isolate was > 10,000-fold more virulent than the Asian isolates in an interferon type I antibody blockade mouse model. These data demonstrate substantial phenotypic differences between low-passage African and Asian isolates both in vitro and in vivo and warrant further investigation. They also highlight the need for basic characterization of ZIKV isolates, as the utilization of the uncharacterized isolates could have consequences for animal model and therapeutic/vaccine development.


Subject(s)
Biological Variation, Population/genetics , Zika Virus/isolation & purification , Aedes/virology , Africa , Americas , Animals , Asia , Disease Models, Animal , Female , Humans , Mice/virology , Mice, Inbred C57BL/virology , Mosquito Vectors/virology , Real-Time Polymerase Chain Reaction/methods , Zika Virus/genetics , Zika Virus Infection/epidemiology , Zika Virus Infection/genetics
SELECTION OF CITATIONS
SEARCH DETAIL