Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chin J Traumatol ; 27(1): 18-26, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37423838

ABSTRACT

PURPOSE: The incidence of heatstroke (HS) is not particularly high; however, once it occurs, the consequences are serious. It is reported that calcitonin gene-related peptide (CGRP) is protective against brain injury in HS rats, but detailed molecular mechanisms need to be further investigated. In this study, we further explored whether CGRP inhibited neuronal apoptosis in HS rats via protein kinase A (PKA)/p-cAMP response element-binding protein (p-CREB) pathway. METHODS: We established a HS rat model in a pre-warmed artificial climate chamber with a temperature of (35.5 ± 0.5) °C and a relative humidity of 60% ± 5%. Heatstress was stopped once core body temperature reaches above 41 °C. A total of 25 rats were randomly divided into 5 groups with 5 animals each: control group, HS group, HS+CGRP group, HS+CGRP antagonist (CGRP8-37) group, and HS+CGRP+PKA/p-CREB pathway blocker (H89) group. A bolus injection of CGRP was administered to each rat in HS+CGRP group, CGRP8-37 (antagonist of CGRP) in HS+CGRP8-37 group, and CGRP with H89 in HS+CGRP+H89 group. Electroencephalograms were recorded and the serum concentration of S100B, neuron-specific enolase (NSE), neuron apoptosis, activated caspase-3 and CGRP expression, as well as pathological morphology of brain tissue were detected at 2 h, 6 h, and 24 h after HS in vivo. The expression of PKA, p-CREB, and Bcl-2 in rat neurons were also detected at 2 h after HS in vitro. Exogenous CGRP, CGRP8-37, or H89 were used to determine whether CGRP plays a protective role in brain injury via PKA/p-CREB pathway. The unpaired t-test was used between the 2 samples, and the mean ± SD was used for multiple samples. Double-tailed p < 0.05 was considered statistically significant. RESULTS: Electroencephalogram showed significant alteration of θ (54.50 ± 11.51 vs. 31.30 ± 8.71, F = 6.790, p = 0.005) and α wave (16.60 ± 3.21 vs. 35.40 ± 11.28, F = 4.549, p = 0.020) in HS group compared to the control group 2 h after HS. The results of triphosphate gap terminal labeling (TUNEL) showed that the neuronal apoptosis of HS rats was increased in the cortex (9.67 ± 3.16 vs. 1.80 ± 1.10, F = 11.002, p = 0.001) and hippocampus (15.73 ± 8.92 vs. 2.00 ± 1.00, F = 4.089, p = 0.028), the expression of activated caspase-3 was increased in the cortex (61.76 ± 25.13 vs. 19.57 ± 17.88, F = 5.695, p = 0.009) and hippocampus (58.60 ± 23.30 vs. 17.80 ± 17.62, F = 4.628, p = 0.019); meanwhile the expression of serum NSE (5.77 ± 1.78 vs. 2.35 ± 0.56, F = 5.174, p = 0.013) and S100B (2.86 ± 0.69 vs. 1.35 ± 0.34, F = 10.982, p = 0.001) were increased significantly under HS. Exogenous CGRP decreased the concentrations of NSE and S100B, and activated the expression of caspase-3 (0.41 ± 0.09 vs. 0.23 ± 0.04, F = 32.387, p < 0.001) under HS; while CGRP8-37 increased NSE (3.99 ± 0.47 vs. 2.40 ± 0.50, F = 11.991, p = 0.000) and S100B (2.19 ± 0.43 vs. 1.42 ± 0.30, F = 4.078, p = 0.025), and activated the expression caspase-3 (0.79 ± 0.10 vs. 0.23 ± 0.04, F = 32.387, p < 0.001). For the cell experiment, CGRP increased Bcl-2 (2.01 ± 0.73 vs. 2.15 ± 0.74, F = 8.993, p < 0.001), PKA (0.88 ± 0.08 vs. 0.37 ± 0.14, F = 20.370, p < 0.001), and p-CREB (0.87 ± 0.13 vs. 0.29 ± 0.10, F = 16.759, p < 0.001) levels; while H89, a blocker of the PKA/p-CREB pathway reversed the expression. CONCLUSIONS: CGRP can protect against HS-induced neuron apoptosis via PKA/p-CREB pathway and reduce activation of caspase-3 by regulating Bcl-2. Thus CGRP may be a new target for the treatment of brain injury in HS.


Subject(s)
Calcitonin Gene-Related Peptide , Heat Stroke , Isoquinolines , Sulfonamides , Animals , Rats , Apoptosis , Brain Injuries/metabolism , Brain Injuries/pathology , Calcitonin Gene-Related Peptide/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Caspase 3 , Proto-Oncogene Proteins c-bcl-2 , Rats, Sprague-Dawley , Heat Stroke/metabolism , Heat Stroke/pathology
2.
Exp Ther Med ; 14(5): 4935-4941, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29201197

ABSTRACT

Heat stroke often leads to multiple organ dysfunction syndrome (MODS) with a neurological morbidity of 30%. Current studies suggested that pathophysiological responses to heat stroke may be due to a systemic inflammatory response syndrome and a series of peptidergic nerve reactions. The mechanisms underlying the high neurological morbidity in heat stroke have remained largely elusive. In recent years, calcitonin gene-related peptide (CGRP) has been considered to have a positive role in central nervous system injury. The present study investigated the influence of CGRP on brain injury induced by heat stroke. A rat model of heat stroke was established in a pre-warmed artificial climate chamber with a temperature of 35.5±0.5°C and a relative humidity of 60±5%. The rectal core temperature (Tc) was monitored. Heat stress was halted at a Tc of no more than 41°C A bolus injection of CGRP was administered to each rat in the HS+CGRP group and a bolus injection of CGRP8-37 was administered to each rat in the HS+CGRP8-37 group after heat stress. After 2 h, electroencephalograms were recorded and the pathological morphology of brain tissue as well as brain cell apoptosis and caspase-3 protein levels in the brain were measured. The EEG of rats in the HS+CGRP group was characterized by a short- to long-term α-wave and low-voltage ß-waves as well as a large amount of intermittent δ- and θ-waves. Compared with the HS group, the θ-wave decreased and the α-wave increased significantly (P<0.05). Slight pathological damage of nerve cells appeared in the HS+CGRP group. Greater damage was observed in HS+CGRP8-37 group with neural cell shrinkage, volume reduction, nuclear pyknosis, disappearance of part of the nuclear membrane and cell necrosis. In the HS+CGRP group, apoptotic cells and caspase-3 protein in the brain were significantly decreased when compared with those in the HS group (P<0.05), while they were significantly increased in the HS+CGRP8-37 group (P<0.05 vs. HS group). The results of the present study reflected that CGRP has a protective effect on early-stage brain injury induced by heat stroke in rats.

3.
Exp Ther Med ; 11(3): 1077-1084, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26998040

ABSTRACT

Septic encephalopathy (SE) is a diffuse cerebral dysfunction resulting from a systemic inflammatory response, and is associated with an increased risk of mortality. The pathogenesis of SE is complex and multifactorial, but unregulated immune imbalance may be an important factor. The current retrospective study examined the clinical data of 86 patients with severe sepsis who were admitted to the Intensive Care Unit at Zhongshan Hospital, Xiamen University (Xiamen, China) from January, 2014 to January, 2015. The patients were assigned to SE and non-SE patient groups according to the presence or absence of SE. The proportion of T-lymphocyte subsets and natural killer (NK) cells in the immune cell population, representing the function of the immune system, were analyzed for their association with SE and compared with other clinical predictors and biomarkers. The incidence of SE in the patients was 39.5%, and this group demonstrated higher mortality rates (38 vs. 10% in non-SE patients; P=0.001). Univariate analysis revealed that the SE patients reported a lower percentage of cluster of differentiation 4+(CD4+) T-lymphocytes (51.67±7.12 vs. 60.72±3.70% in non-SE patients; P<0.01), a lower CD4+/cluster of differentiation 8+(CD8+) ratio (1.59±0.32 vs. 1.85±0.26% in non-SE patients; P<0.01) and a higher percentage of NK cells (11.80±1.44 vs. 9.19±2.36% in non-SE patients; P<0.01). Using a binary logistic regression model, the Acute Physiology and Chronic Health Evaluation II score and the percentage of CD4+ T-lymphocytes were demonstrated to be independently associated with SE (respectively, P=0.012 and OR, 4.763; P=0.005 and OR, 0.810). An area under the curve analysis of a receiver operating characteristic curve of the two indicators revealed that these were equally powerful measures in prediction of SE (Z=1.247, P>0.05). The present results confirm that SE leads to higher mortality in patients with severe sepsis, and demonstrate that immune imbalance is important in the development of SE. The proportion of CD4+ T-lymphocytes present were revealed in the current study to be a powerful predictor of SE in patients with severe sepsis.

4.
Int Immunopharmacol ; 11(11): 1850-4, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21821152

ABSTRACT

We investigated the changes in characteristics of neutrophil CD11b, monocyte CD11b, platelet CD62P, endothelin (ET), and neutrophil CD178 in patients with coronary heart disease (CHD) before and after primary coronary stenting. A total of 41 patients with CHD who underwent coronary stenting and 40 control subjects were enrolled in the study. In CHD patients, peripheral blood samples were taken 24 h before and 30 min, 24 h, and 72 h after successful coronary stenting. All markers were significantly elevated in patients with CHD compared with controls (P<0.05). Time-course studies revealed that the expressions of neutrophil CD11b, monocyte CD11b, platelet CD62P, and ET were lower at 30 min post-operation (PO) compared with that at 24 h before operation (BO) (P<0.05). All levels significantly increased from 30 min PO to 24 h PO (P<0.05) and decreased thereafter until 72 h PO (P>0.05). Time course changes in neutrophil CD11b levels after coronary stenting were significantly higher in patients with unstable angina pectoris than in patients with stable angina pectoris (P<0.05). CD11b levels were related to CD62P in patients with CHD (P<0.05). Neutrophil CD11b and monocyte CD11b levels were significantly increased in patients with CHD who underwent coronary stenting compared with controls (P<0.05). Results show that CD11b levels increased, meanwhile, the levels of CD62P and ET increased in CHD patients after coronary stenting. In addition, neutrophil CD178 levels of apoptosis factor in patients, which is important for regression of inflammation, remained high for a period of time after coronary stenting.


Subject(s)
Angina, Stable/immunology , Angina, Unstable/immunology , Apoptosis , Endothelium, Vascular , Immunologic Factors/biosynthesis , Stents/adverse effects , Angina, Stable/blood , Angina, Stable/pathology , Angina, Stable/therapy , Angina, Unstable/blood , Angina, Unstable/pathology , Angina, Unstable/therapy , Angioplasty, Balloon, Coronary , Antigens, CD/biosynthesis , Antigens, CD/blood , Apoptosis/immunology , Biomarkers/blood , Blood Cell Count , Blood Platelets/immunology , Blood Platelets/pathology , Case-Control Studies , Cell Adhesion/immunology , Endothelins/biosynthesis , Endothelins/immunology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Female , Humans , Immunologic Factors/blood , Male , Middle Aged , Monocytes/immunology , Monocytes/pathology , Neutrophils/immunology , Neutrophils/pathology
SELECTION OF CITATIONS
SEARCH DETAIL