Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Cell ; 176(3): 491-504.e21, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30612740

ABSTRACT

Increased protein synthesis plays an etiologic role in diverse cancers. Here, we demonstrate that METTL13 (methyltransferase-like 13) dimethylation of eEF1A (eukaryotic elongation factor 1A) lysine 55 (eEF1AK55me2) is utilized by Ras-driven cancers to increase translational output and promote tumorigenesis in vivo. METTL13-catalyzed eEF1A methylation increases eEF1A's intrinsic GTPase activity in vitro and protein production in cells. METTL13 and eEF1AK55me2 levels are upregulated in cancer and negatively correlate with pancreatic and lung cancer patient survival. METTL13 deletion and eEF1AK55me2 loss dramatically reduce Ras-driven neoplastic growth in mouse models and in patient-derived xenografts (PDXs) from primary pancreatic and lung tumors. Finally, METTL13 depletion renders PDX tumors hypersensitive to drugs that target growth-signaling pathways. Together, our work uncovers a mechanism by which lethal cancers become dependent on the METTL13-eEF1AK55me2 axis to meet their elevated protein synthesis requirement and suggests that METTL13 inhibition may constitute a targetable vulnerability of tumors driven by aberrant Ras signaling.


Subject(s)
Methyltransferases/metabolism , Peptide Elongation Factor 1/metabolism , Adult , Aged , Animals , Carcinogenesis , Cell Line , Cell Transformation, Neoplastic/metabolism , Female , HEK293 Cells , Heterografts , Humans , Lysine/metabolism , Male , Methylation , Methyltransferases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Peptide Elongation Factor 1/genetics , Protein Biosynthesis , Protein Processing, Post-Translational , Proteomics , Signal Transduction
2.
Nature ; 623(7987): 633-642, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938770

ABSTRACT

Trimethylation of histone H3 lysine 9 (H3K9me3) is crucial for the regulation of gene repression and heterochromatin formation, cell-fate determination and organismal development1. H3K9me3 also provides an essential mechanism for silencing transposable elements1-4. However, previous studies have shown that canonical H3K9me3 readers (for example, HP1 (refs. 5-9) and MPP8 (refs. 10-12)) have limited roles in silencing endogenous retroviruses (ERVs), one of the main transposable element classes in the mammalian genome13. Here we report that trinucleotide-repeat-containing 18 (TNRC18), a poorly understood chromatin regulator, recognizes H3K9me3 to mediate the silencing of ERV class I (ERV1) elements such as LTR12 (ref. 14). Biochemical, biophysical and structural studies identified the carboxy-terminal bromo-adjacent homology (BAH) domain of TNRC18 (TNRC18(BAH)) as an H3K9me3-specific reader. Moreover, the amino-terminal segment of TNRC18 is a platform for the direct recruitment of co-repressors such as HDAC-Sin3-NCoR complexes, thus enforcing optimal repression of the H3K9me3-demarcated ERVs. Point mutagenesis that disrupts the TNRC18(BAH)-mediated H3K9me3 engagement caused neonatal death in mice and, in multiple mammalian cell models, led to derepressed expression of ERVs, which affected the landscape of cis-regulatory elements and, therefore, gene-expression programmes. Collectively, we describe a new H3K9me3-sensing and regulatory pathway that operates to epigenetically silence evolutionarily young ERVs and exert substantial effects on host genome integrity, transcriptomic regulation, immunity and development.


Subject(s)
Endogenous Retroviruses , Gene Silencing , Histones , Intracellular Signaling Peptides and Proteins , Lysine , Retroelements , Animals , Humans , Mice , Chromatin/genetics , Chromatin/metabolism , Co-Repressor Proteins/metabolism , Endogenous Retroviruses/genetics , Epigenesis, Genetic , Gene Expression Profiling , Genome/genetics , Histone Deacetylases/metabolism , Histones/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lysine/metabolism , Methylation , Protein Domains , Retroelements/genetics , Terminal Repeat Sequences/genetics , Animals, Newborn , Cell Line
3.
Genome Res ; 34(5): 740-756, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38744529

ABSTRACT

Although DNA N 6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has recently generated great interest. Biochemical and genetic evidence supports that AMT1, an MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, the 6mA transmission mechanism remains to be elucidated. Taking advantage of single-molecule real-time circular consensus sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA in Tetrahymena thermophila In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2'-deoxyuridine (BrdU). In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, whereas de novo methylation in ΔAMT1 cells is slow and sporadic. In Tetrahymena, regularly spaced 6mA clusters coincide with the linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by the reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with a striking similarity to 5-methylcytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.


Subject(s)
Adenine , DNA Methylation , Tetrahymena thermophila , Tetrahymena thermophila/genetics , Tetrahymena thermophila/metabolism , Adenine/metabolism , Adenine/analogs & derivatives , DNA Replication , DNA, Protozoan/genetics , DNA, Protozoan/metabolism
4.
J Biol Chem ; 300(9): 107633, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098534

ABSTRACT

DNA methylation is one of the major epigenetic mechanisms crucial for gene regulation and genome stability. De novo DNA methyltransferase DNMT3C is required for silencing evolutionarily young transposons during mice spermatogenesis. Mutation of DNMT3C led to a sterility phenotype that cannot be rescued by its homologs DNMT3A and DNMT3B. However, the structural basis of DNMT3C-mediated DNA methylation remains unknown. Here, we report the structure and mechanism of DNMT3C-mediated DNA methylation. The DNMT3C methyltransferase domain recognizes CpG-containing DNA in a manner similar to that of DNMT3A and DNMT3B, in line with their high sequence similarity. However, two evolutionary covariation sites, C543 and E590, diversify the substrate interaction among DNMT3C, DNMT3A, and DNMT3B, resulting in distinct DNA methylation activity and specificity between DNMT3C, DNMT3A, and DNMT3B in vitro. In addition, our combined structural and biochemical analysis reveals that the disease-causing rahu mutation of DNMT3C compromises its oligomerization and DNA-binding activities, explaining the loss of DNA methylation activity caused by this mutation. This study provides a mechanistic insight into DNMT3C-mediated DNA methylation that complements DNMT3A- and DNMT3B-mediated DNA methylation in mice, unraveling a regulatory mechanism by which evolutionary conservation and diversification fine-tune the activity of de novo DNA methyltransferases.

5.
Nucleic Acids Res ; 51(22): 12476-12491, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37941146

ABSTRACT

Oligomerization of DNMT3B, a mammalian de novo DNA methyltransferase, critically regulates its chromatin targeting and DNA methylation activities. However, how the N-terminal PWWP and ADD domains interplay with the C-terminal methyltransferase (MTase) domain in regulating the dynamic assembly of DNMT3B remains unclear. Here, we report the cryo-EM structure of DNMT3B under various oligomerization states. The ADD domain of DNMT3B interacts with the MTase domain to form an autoinhibitory conformation, resembling the previously observed DNMT3A autoinhibition. Our combined structural and biochemical study further identifies a role for the PWWP domain and its associated ICF mutation in the allosteric regulation of DNMT3B tetramer, and a differential functional impact on DNMT3B by potential ADD-H3K4me0 and PWWP-H3K36me3 bindings. In addition, our comparative structural analysis reveals a coupling between DNMT3B oligomerization and folding of its substrate-binding sites. Together, this study provides mechanistic insights into the allosteric regulation and dynamic assembly of DNMT3B.


Subject(s)
DNA Methyltransferase 3B , Humans , Allosteric Regulation , Chromatin , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA Methyltransferase 3A , Mammals/genetics , DNA Methyltransferase 3B/chemistry , Cryoelectron Microscopy
6.
J Biol Chem ; 299(12): 105433, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926286

ABSTRACT

DNA methylation provides an important epigenetic mechanism that critically regulates gene expression, genome imprinting, and retrotransposon silencing. In plants, DNA methylation is prevalent not only in a CG dinucleotide context but also in non-CG contexts, namely CHG and CHH (H = C, T, or A) methylation. It has been established that plant non-CG DNA methylation is highly context dependent, with the +1- and +2-flanking sequences enriched with A/T nucleotides. How DNA sequence, conformation, and dynamics influence non-CG methylation remains elusive. Here, we report structural and biochemical characterizations of the intrinsic substrate preference of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), a plant DNA methyltransferase responsible for establishing all cytosine methylation and maintaining CHH methylation. Among nine CHH motifs, the DRM2 methyltransferase (MTase) domain shows marked substrate preference toward CWW (W = A or T) motifs, correlating well with their relative abundance in planta. Furthermore, we report the crystal structure of DRM2 MTase in complex with a DNA duplex containing a flexible TpA base step at the +1/+2-flanking sites of the target nucleotide. Comparative structural analysis of the DRM2-DNA complexes provides a mechanism by which flanking nucleotide composition impacts DRM2-mediated DNA methylation. Furthermore, the flexibility of the TpA step gives rise to two alternative DNA conformations, resulting in different interactions with DRM2 and consequently temperature-dependent shift of the substrate preference of DRM2. Together, this study provides insights into how the interplay between the conformational dynamics of DNA and temperature as an environmental factor contributes to the context-dependent CHH methylation by DRM2.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , DNA/metabolism , DNA Methylation , DNA, Plant/metabolism , Gene Expression Regulation, Plant , Methyltransferases/genetics , Methyltransferases/metabolism , Nucleic Acid Conformation , Nucleotides/metabolism
7.
J Biol Chem ; 299(7): 104842, 2023 07.
Article in English | MEDLINE | ID: mdl-37209825

ABSTRACT

FAM86A is a class I lysine methyltransferase (KMT) that generates trimethylation on the eukaryotic translation elongation factor 2 (EEF2) at Lys525. Publicly available data from The Cancer Dependency Map project indicate high dependence of hundreds of human cancer cell lines on FAM86A expression. This classifies FAM86A among numerous other KMTs as potential targets for future anticancer therapies. However, selective inhibition of KMTs by small molecules can be challenging due to high conservation within the S-adenosyl methionine (SAM) cofactor binding domain among KMT subfamilies. Therefore, understanding the unique interactions within each KMT-substrate pair can facilitate developing highly specific inhibitors. The FAM86A gene encodes an N-terminal FAM86 domain of unknown function in addition to its C-terminal methyltransferase domain. Here, we used a combination of X-ray crystallography, the AlphaFold algorithms, and experimental biochemistry to identify an essential role of the FAM86 domain in mediating EEF2 methylation by FAM86A. To facilitate our studies, we also generated a selective EEF2K525 methyl antibody. Overall, this is the first report of a biological function for the FAM86 structural domain in any species and an example of a noncatalytic domain participating in protein lysine methylation. The interaction between the FAM86 domain and EEF2 provides a new strategy for developing a specific FAM86A small molecule inhibitor, and our results provide an example in which modeling a protein-protein interaction with AlphaFold expedites experimental biology.


Subject(s)
Lysine , Methyltransferases , Models, Molecular , Protein Domains , Humans , Lysine/metabolism , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Peptide Elongation Factor 2/genetics , Peptide Elongation Factor 2/metabolism , S-Adenosylmethionine/metabolism , Substrate Specificity , Protein Structure, Tertiary , Crystallography, X-Ray , Point Mutation
8.
Nucleic Acids Res ; 49(10): 5956-5966, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33999154

ABSTRACT

Replication of the ∼30 kb-long coronavirus genome is mediated by a complex of non-structural proteins (NSP), in which NSP7 and NSP8 play a critical role in regulating the RNA-dependent RNA polymerase (RdRP) activity of NSP12. The assembly of NSP7, NSP8 and NSP12 proteins is highly dynamic in solution, yet the underlying mechanism remains elusive. We report the crystal structure of the complex between NSP7 and NSP8 of SARS-CoV-2, revealing a 2:2 heterotetrameric form. Formation of the NSP7-NSP8 complex is mediated by two distinct oligomer interfaces, with interface I responsible for heterodimeric NSP7-NSP8 assembly, and interface II mediating the heterotetrameric interaction between the two NSP7-NSP8 dimers. Structure-guided mutagenesis, combined with biochemical and enzymatic assays, further reveals a structural coupling between the two oligomer interfaces, as well as the importance of these interfaces for the RdRP activity of the NSP7-NSP8-NSP12 complex. Finally, we identify an NSP7 mutation that differentially affects the stability of the NSP7-NSP8 and NSP7-NSP8-NSP12 complexes leading to a selective impairment of the RdRP activity. Together, this study provides deep insights into the structure and mechanism for the dynamic assembly of NSP7 and NSP8 in regulating the replication of the SARS-CoV-2 genome, with important implications for antiviral drug development.


Subject(s)
COVID-19 , Coronavirus RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Chromatography, Gel , Coronavirus RNA-Dependent RNA Polymerase/biosynthesis , Coronavirus RNA-Dependent RNA Polymerase/genetics , Crystallography, X-Ray , Dimerization , Models, Molecular , Multiprotein Complexes , Mutagenesis , Mutation , Protein Conformation , Protein Domains , Protein Interaction Mapping , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Virus Replication
9.
Anal Chem ; 93(27): 9634-9639, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34185510

ABSTRACT

Poly- and perfluoroalkyl substances (PFASs) are widely used in industrial products and consumer goods. Due to their extremely recalcitrant nature and potential bioaccumulation and toxicity, exposure to PFASs may result in adverse health outcomes in humans and wildlife. In this study, we developed a chemoproteomic strategy, based on the use of isotope-coded desthiobiotin-perfluorooctanephosphonic acid (PFOPA) probe and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, to profile PFAS-binding proteins. Targeted proteins were labeled with the desthiobiotin-PFOPA probe, digested with trypsin, and the ensuing desthiobiotin-conjugated peptides were enriched with streptavidin beads for LC-MS/MS analysis. We were able to identify 469 putative PFOPA-binding proteins. By conducting competitive binding experiments using low (10 µM) and high (100 µM) concentrations of stable isotope-labeled PFOPA probes, we further identified 128 nonredundant peptides derived from 75 unique proteins that exhibit selective binding toward PFOPA. Additionally, we demonstrated that one of these proteins, fatty acid-binding protein 5 (FABP5), could interact directly with PFASs, including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), and perfluorobutanesulfonic acid (PFBS). Furthermore, desthiobiotin-labeled lysine residues are located close to the fatty acid-binding pocket of FABP5, and the binding affinity varies with the structures of PFASs. Taken together, we developed a novel chemoproteomic method for interrogating the PFAS-interacting proteome. The identification of these proteins sets the stage for understanding the mechanisms through which exposure to PFASs confers adverse human health effects.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Proteome , Chromatography, Liquid , Environmental Pollutants , Fatty Acid-Binding Proteins , Humans , Tandem Mass Spectrometry
10.
Mol Cell ; 39(1): 133-44, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20603081

ABSTRACT

MicroRNAs (miRNAs) are a class of noncoding RNAs that regulate target gene expression at the posttranscriptional level. Here, we report that secreted miRNAs can serve as signaling molecules mediating intercellular communication. In human blood cells and cultured THP-1 cells, miR-150 was selectively packaged into microvesicles (MVs) and actively secreted. THP-1-derived MVs can enter and deliver miR-150 into human HMEC-1 cells, and elevated exogenous miR-150 effectively reduced c-Myb expression and enhanced cell migration in HMEC-1 cells. In vivo studies confirmed that intravenous injection of THP-1 MVs significantly increased the level of miR-150 in mouse blood vessels. MVs isolated from the plasma of patients with atherosclerosis contained higher levels of miR-150, and they more effectively promoted HMEC-1 cell migration than MVs from healthy donors. These results demonstrate that cells can secrete miRNAs and deliver them into recipient cells where the exogenous miRNAs can regulate target gene expression and recipient cell function.


Subject(s)
Cell Movement , Endothelial Cells/cytology , MicroRNAs/metabolism , Monocytes/metabolism , Animals , Atherosclerosis/blood , Atherosclerosis/pathology , Blood Cells/cytology , Blood Cells/drug effects , Blood Cells/metabolism , Cell Movement/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Mice , Mice, Inbred C57BL , MicroRNAs/blood , MicroRNAs/pharmacology , Monocytes/cytology , Monocytes/drug effects , Proto-Oncogene Proteins c-myb/metabolism , Secretory Vesicles/drug effects , Secretory Vesicles/metabolism , Secretory Vesicles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL