Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell ; 184(15): 4032-4047.e31, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34171309

ABSTRACT

Although mutations in DNA are the best-studied source of neoantigens that determine response to immune checkpoint blockade, alterations in RNA splicing within cancer cells could similarly result in neoepitope production. However, the endogenous antigenicity and clinical potential of such splicing-derived epitopes have not been tested. Here, we demonstrate that pharmacologic modulation of splicing via specific drug classes generates bona fide neoantigens and elicits anti-tumor immunity, augmenting checkpoint immunotherapy. Splicing modulation inhibited tumor growth and enhanced checkpoint blockade in a manner dependent on host T cells and peptides presented on tumor MHC class I. Splicing modulation induced stereotyped splicing changes across tumor types, altering the MHC I-bound immunopeptidome to yield splicing-derived neoepitopes that trigger an anti-tumor T cell response in vivo. These data definitively identify splicing modulation as an untapped source of immunogenic peptides and provide a means to enhance response to checkpoint blockade that is readily translatable to the clinic.


Subject(s)
Neoplasms/genetics , Neoplasms/immunology , RNA Splicing/genetics , Animals , Antigen Presentation/drug effects , Antigen Presentation/immunology , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Epitopes/immunology , Ethylenediamines/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Hematopoiesis/drug effects , Hematopoiesis/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Inflammation/pathology , Mice, Inbred C57BL , Peptides/metabolism , Protein Isoforms/metabolism , Pyrroles/pharmacology , RNA Splicing/drug effects , Sulfonamides/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
2.
N Engl J Med ; 386(8): 735-743, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35196427

ABSTRACT

BACKGROUND: Covalent (irreversible) Bruton's tyrosine kinase (BTK) inhibitors have transformed the treatment of multiple B-cell cancers, especially chronic lymphocytic leukemia (CLL). However, resistance can arise through multiple mechanisms, including acquired mutations in BTK at residue C481, the binding site of covalent BTK inhibitors. Noncovalent (reversible) BTK inhibitors overcome this mechanism and other sources of resistance, but the mechanisms of resistance to these therapies are currently not well understood. METHODS: We performed genomic analyses of pretreatment specimens as well as specimens obtained at the time of disease progression from patients with CLL who had been treated with the noncovalent BTK inhibitor pirtobrutinib. Structural modeling, BTK-binding assays, and cell-based assays were conducted to study mutations that confer resistance to noncovalent BTK inhibitors. RESULTS: Among 55 treated patients, we identified 9 patients with relapsed or refractory CLL and acquired mechanisms of genetic resistance to pirtobrutinib. We found mutations (V416L, A428D, M437R, T474I, and L528W) that were clustered in the kinase domain of BTK and that conferred resistance to both noncovalent BTK inhibitors and certain covalent BTK inhibitors. Mutations in BTK or phospholipase C gamma 2 (PLCγ2), a signaling molecule and downstream substrate of BTK, were found in all 9 patients. Transcriptional activation reflecting B-cell-receptor signaling persisted despite continued therapy with noncovalent BTK inhibitors. CONCLUSIONS: Resistance to noncovalent BTK inhibitors arose through on-target BTK mutations and downstream PLCγ2 mutations that allowed escape from BTK inhibition. A proportion of these mutations also conferred resistance across clinically approved covalent BTK inhibitors. These data suggested new mechanisms of genomic escape from established covalent and novel noncovalent BTK inhibitors. (Funded by the American Society of Hematology and others.).


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Drug Resistance, Neoplasm , Leukemia, Lymphocytic, Chronic, B-Cell , Mutation , Phospholipase C gamma , Protein Kinase Inhibitors , Humans , Middle Aged , Adenine/analogs & derivatives , Adenine/pharmacology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/ultrastructure , Drug Resistance, Neoplasm/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Phospholipase C gamma/genetics , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptors, Antigen, B-Cell/metabolism , Sequence Analysis, RNA , Signal Transduction/drug effects
3.
Blood ; 141(19): 2359-2371, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36626250

ABSTRACT

Patients treated with cytotoxic therapies, including autologous stem cell transplantation, are at risk for developing therapy-related myeloid neoplasms (tMN). Preleukemic clones (ie, clonal hematopoiesis [CH]) are detectable years before the development of these aggressive malignancies, although the genomic events leading to transformation and expansion are not well defined. Here, by leveraging distinctive chemotherapy-associated mutational signatures from whole-genome sequencing data and targeted sequencing of prechemotherapy samples, we reconstructed the evolutionary life-history of 39 therapy-related myeloid malignancies. A dichotomy was revealed, in which neoplasms with evidence of chemotherapy-induced mutagenesis from platinum and melphalan were hypermutated and enriched for complex structural variants (ie, chromothripsis), whereas neoplasms with nonmutagenic chemotherapy exposures were genomically similar to de novo acute myeloid leukemia. Using chemotherapy-associated mutational signatures as temporal barcodes linked to discrete clinical exposure in each patient's life, we estimated that several complex events and genomic drivers were acquired after chemotherapy was administered. For patients with prior multiple myeloma who were treated with high-dose melphalan and autologous stem cell transplantation, we demonstrate that tMN can develop from either a reinfused CH clone that escapes melphalan exposure and is selected after reinfusion, or from TP53-mutant CH that survives direct myeloablative conditioning and acquires melphalan-induced DNA damage. Overall, we revealed a novel mode of tMN progression that is not reliant on direct mutagenesis or even exposure to chemotherapy. Conversely, for tMN that evolve under the influence of chemotherapy-induced mutagenesis, distinct chemotherapies not only select preexisting CH but also promote the acquisition of recurrent genomic drivers.


Subject(s)
Antineoplastic Agents , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Neoplasms, Second Primary , Humans , Melphalan , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Autologous/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Neoplasms, Second Primary/chemically induced , Neoplasms, Second Primary/genetics , Antineoplastic Agents/pharmacology
4.
Nature ; 574(7778): 432-436, 2019 10.
Article in English | MEDLINE | ID: mdl-31597964

ABSTRACT

SF3B1 is the most commonly mutated RNA splicing factor in cancer1-4, but the mechanisms by which SF3B1 mutations promote malignancy are poorly understood. Here we integrated pan-cancer splicing analyses with a positive-enrichment CRISPR screen to prioritize splicing alterations that promote tumorigenesis. We report that diverse SF3B1 mutations converge on repression of BRD9, which is a core component of the recently described non-canonical BAF chromatin-remodelling complex that also contains GLTSCR1 and GLTSCR1L5-7. Mutant SF3B1 recognizes an aberrant, deep intronic branchpoint within BRD9 and thereby induces the inclusion of a poison exon that is derived from an endogenous retroviral element and subsequent degradation of BRD9 mRNA. Depletion of BRD9 causes the loss of non-canonical BAF at CTCF-associated loci and promotes melanomagenesis. BRD9 is a potent tumour suppressor in uveal melanoma, such that correcting mis-splicing of BRD9 in SF3B1-mutant cells using antisense oligonucleotides or CRISPR-directed mutagenesis suppresses tumour growth. Our results implicate the disruption of non-canonical BAF in the diverse cancer types that carry SF3B1 mutations and suggest a mechanism-based therapeutic approach for treating these malignancies.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Neoplasms/genetics , RNA Splicing , Spliceosomes/metabolism , Animals , Cell Line, Tumor , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/genetics , Humans , Mice , Neoplasm Transplantation , Neoplasms/pathology , Phosphoproteins/metabolism , RNA Splicing Factors/metabolism , Spliceosomes/genetics , Transcription Factors/metabolism
5.
Blood ; 130(14): 1644-1648, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28801450

ABSTRACT

Classical hairy cell leukemia (cHCL) is characterized by a near 100% frequency of the BRAFV600E mutation, whereas ∼30% of variant HCLs (vHCLs) have MAP2K1 mutations. However, recurrent genetic alterations cooperating with BRAFV600E or MAP2K1 mutations in HCL, as well as those in MAP2K1 wild-type vHCL, are not well defined. We therefore performed deep targeted mutational and copy number analysis of cHCL (n = 53) and vHCL (n = 8). The most common genetic alteration in cHCL apart from BRAFV600E was heterozygous loss of chromosome 7q, the minimally deleted region of which targeted wild-type BRAF, subdividing cHCL into those hemizygous versus heterozygous for the BRAFV600E mutation. In addition to CDKN1B mutations in cHCL, recurrent inactivating mutations in KMT2C (MLL3) were identified in 15% and 25% of cHCLs and vHCLs, respectively. Moreover, 13% of vHCLs harbored predicted activating mutations in CCND3 A change-of-function mutation in the splicing factor U2AF1 was also present in 13% of vHCLs. Genomic analysis of de novo vemurafenib-resistant cHCL identified a novel gain-of-function mutation in IRS1 and losses of NF1 and NF2, each of which contributed to resistance. These data provide further insight into the genetic bases of cHCL and vHCL and mechanisms of RAF inhibitor resistance encountered clinically.


Subject(s)
Leukemia, Hairy Cell/genetics , Mutation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cyclin D3/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , DNA-Binding Proteins/genetics , Drug Resistance, Neoplasm , Genomics , Humans , Indoles/pharmacology , Indoles/therapeutic use , Leukemia, Hairy Cell/drug therapy , MAP Kinase Kinase 1/genetics , Proto-Oncogene Proteins B-raf/genetics , Splicing Factor U2AF/genetics , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Vemurafenib
6.
Blood ; 130(4): 397-407, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28576879

ABSTRACT

Chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML) are myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) overlap disorders characterized by monocytosis, myelodysplasia, and a characteristic hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). Currently, there are no available disease-modifying therapies for CMML, nor are there preclinical models that fully recapitulate the unique features of CMML. Through use of immunocompromised mice with transgenic expression of human GM-CSF, interleukin-3, and stem cell factor in a NOD/SCID-IL2Rγnull background (NSGS mice), we demonstrate remarkable engraftment of CMML and JMML providing the first examples of serially transplantable and genetically accurate models of CMML. Xenotransplantation of CD34+ cells (n = 8 patients) or unfractionated bone marrow (BM) or peripheral blood mononuclear cells (n = 10) resulted in robust engraftment of CMML in BM, spleen, liver, and lung of recipients (n = 82 total mice). Engrafted cells were myeloid-restricted and matched the immunophenotype, morphology, and genetic mutations of the corresponding patient. Similar levels of engraftment were seen upon serial transplantation of human CD34+ cells in secondary NSGS recipients (2/5 patients, 6/11 mice), demonstrating the durability of CMML grafts and functionally validating CD34+ cells as harboring the disease-initiating compartment in vivo. Successful engraftments of JMML primary samples were also achieved in all NSGS recipients (n = 4 patients, n = 12 mice). Engraftment of CMML and JMML resulted in overt phenotypic abnormalities and lethality in recipients, which facilitated evaluation of the JAK2/FLT3 inhibitor pacritinib in vivo. These data reveal that NSGS mice support the development of CMML and JMML disease-initiating and mature leukemic cells in vivo, allowing creation of genetically accurate preclinical models of these disorders.


Subject(s)
Bridged-Ring Compounds/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelomonocytic, Juvenile/drug therapy , Myelodysplastic Syndromes/drug therapy , Pyrimidines/pharmacology , Animals , Female , Heterografts , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelomonocytic, Juvenile/genetics , Leukemia, Myelomonocytic, Juvenile/metabolism , Leukemia, Myelomonocytic, Juvenile/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
8.
Nat Med ; 12(9): 1039-47, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16936725

ABSTRACT

Immunoincompetence after allogeneic hematopoietic stem cell transplantation (HSCT) affects in particular the T-cell lineage and is associated with an increased risk for infections, graft failure and malignant relapse. To generate large numbers of T-cell precursors for adoptive therapy, we cultured mouse hematopoietic stem cells (HSCs) in vitro on OP9 mouse stromal cells expressing the Notch-1 ligand Delta-like-1 (OP9-DL1). We infused these cells, together with T-cell-depleted mouse bone marrow or purified HSCs, into lethally irradiated allogeneic recipients and determined their effect on T-cell reconstitution after transplantation. Recipients of OP9-DL1-derived T-cell precursors showed increased thymic cellularity and substantially improved donor T-cell chimerism (versus recipients of bone marrow or HSCs only). OP9-DL1-derived T-cell precursors gave rise to host-tolerant CD4+ and CD8+ populations with normal T-cell antigen receptor repertoires, cytokine secretion and proliferative responses to antigen. Administration of OP9-DL1-derived T-cell precursors increased resistance to infection with Listeria monocytogenes and mediated significant graft-versus-tumor (GVT) activity but not graft-versus-host disease (GVHD). We conclude that the adoptive transfer of OP9-DL1-derived T-cell precursors markedly enhances T-cell reconstitution after transplantation, resulting in GVT activity without GVHD.


Subject(s)
Adoptive Transfer , Hematopoietic Stem Cell Transplantation , Stem Cells/physiology , T-Lymphocytes/immunology , T-Lymphocytes/physiology , Animals , Coculture Techniques , Fibroblast Growth Factor 7/pharmacology , Graft vs Host Disease/immunology , Graft vs Tumor Effect/immunology , Listeriosis/immunology , Lymphocyte Depletion , Mice , Regeneration , T-Lymphocytes/drug effects
9.
Nat Cancer ; 4(12): 1675-1692, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37872381

ABSTRACT

Despite recent advances in the treatment of acute myeloid leukemia (AML), there has been limited success in targeting surface antigens in AML, in part due to shared expression across malignant and normal cells. Here, high-density immunophenotyping of AML coupled with proteogenomics identified unique expression of a variety of antigens, including the RNA helicase U5 snRNP200, on the surface of AML cells but not on normal hematopoietic precursors and skewed Fc receptor distribution in the AML immune microenvironment. Cell membrane localization of U5 snRNP200 was linked to surface expression of the Fcγ receptor IIIA (FcγIIIA, also known as CD32A) and correlated with expression of interferon-regulated immune response genes. Anti-U5 snRNP200 antibodies engaging activating Fcγ receptors were efficacious across immunocompetent AML models and were augmented by combination with azacitidine. These data provide a roadmap of AML-associated antigens with Fc receptor distribution in AML and highlight the potential for targeting the AML cell surface using Fc-optimized therapeutics.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, IgG , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antigens, Surface , Leukemia, Myeloid, Acute/drug therapy , Receptors, Fc/metabolism , Receptors, IgG/metabolism , Ribonucleoproteins, Small Nuclear , Tumor Microenvironment
10.
J Immunol ; 185(3): 1912-9, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20622117

ABSTRACT

Alloreactive T cells are crucial for graft-versus-host disease (GVHD) pathophysiology, and modulating their trafficking patterns has been efficacious in ameliorating experimental disease. We report in this paper that P-selectin, a glycoprotein found on resting and inflamed endothelium, is important for donor alloreactive T cells trafficking into GVHD target organs, such as the intestines and skin. Compared with wild-type (WT) recipients of allogeneic bone marrow transplantation, P-selectin(-/-) recipients exhibit decreased GVHD mortality and decreased GVHD of the skin, liver, and small bowels. This was associated with diminished infiltration of alloactivated T cells into the Peyer's patches and small bowels, coupled with increased numbers of donor T cells in the spleen and secondary lymphoid organs (SLOs). Surprisingly, however, donor T cells deficient for P-selectin glycoprotein ligand 1, the most well described P-selectin ligand, mediated GVHD similar to WT T cells and accumulated in SLO and target organs in similar numbers as WT T cells. This suggests that P-selectin may be required for trafficking into inflamed tissues but not SLO and that donor T cells may use multiple P-selectin ligands apart from P-selectin glycoprotein ligand 1 to interact with P-selectin and traffic into inflamed tissues during GVHD. We conclude that targeting P-selectin may be a viable strategy for GVHD prophylaxis or treatment.


Subject(s)
Bone Marrow Transplantation/immunology , Graft vs Host Disease/immunology , Graft vs Host Disease/therapy , P-Selectin/genetics , Animals , Disease Models, Animal , Endothelium, Vascular/immunology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Graft vs Host Disease/physiopathology , Inflammation Mediators/metabolism , Inflammation Mediators/physiology , Ligands , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , P-Selectin/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocyte Subsets/transplantation , Transplantation, Homologous
11.
Clin Cancer Res ; 28(23): 5149-5155, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36170461

ABSTRACT

PURPOSE: Sustained minimal residual disease (MRD) negativity is associated with long-term survival in multiple myeloma. The gut microbiome is affected by diet, and in turn can modulate host immunity, for example through production of short-chain fatty acids including butyrate. We hypothesized that dietary factors affect the microbiome (abundance of butyrate-producing bacteria or stool butyrate concentration) and may be associated with multiple myeloma outcomes. EXPERIMENTAL DESIGN: We examined the relationship of dietary factors (via a food frequency questionnaire), stool metabolites (via gas chromatography-mass spectrometry), and the stool microbiome (via 16S sequencing - α-diversity and relative abundance of butyrate-producing bacteria) with sustained MRD negativity (via flow cytometry at two timepoints 1 year apart) in myeloma patients on lenalidomide maintenance. The Healthy Eating Index 2015 score and flavonoid nutrient values were calculated from the food frequency questionnaire. The Wilcoxon rank sum test was used to evaluate associations with two-sided P < 0.05 considered significant. RESULTS: At 3 months, higher stool butyrate concentration (P = 0.037), butyrate producers (P = 0.025), and α-diversity (P = 0.0035) were associated with sustained MRD negativity. Healthier dietary proteins, (from seafood and plants), correlated with butyrate at 3 months (P = 0.009) and sustained MRD negativity (P = 0.05). Consumption of dietary flavonoids, plant nutrients with antioxidant effects, correlated with stool butyrate concentration (anthocyanidins P = 0.01, flavones P = 0.01, and flavanols P = 0.02). CONCLUSIONS: This is the first study to demonstrate an association between a plant-based dietary pattern, stool butyrate production, and sustained MRD negativity in multiple myeloma, providing rationale to evaluate a prospective dietary intervention.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Butyrates , Neoplasm, Residual , Diet, Healthy , Diet, Vegetarian
12.
Blood ; 114(17): 3693-706, 2009 Oct 22.
Article in English | MEDLINE | ID: mdl-19666872

ABSTRACT

Alloreactive donor cytolytic T lymphocytes play a critical role in pathophysiology of acute graft-versus-host disease (GVHD). As GVHD progression involves tumor necrosis factor superfamily receptor activation, and as apoptotic signaling for some tumor necrosis factor superfamily receptors might involve acid sphingomyelinase (ASMase)-mediated ceramide generation, we hypothesized that ASMase deletion would ameliorate GVHD. Using clinically relevant mouse models of acute GVHD in which allogeneic bone marrow and T cells were transplanted into asmase+/+ and asmase(-/-) hosts, we identify host ASMase as critical for full-blown GVHD. Lack of host ASMase reduced the acute inflammatory phase of GVHD, attenuating cytokine storm, CD8+ T-cell proliferation/activation, and apoptosis of relevant graft-versus-host target cells (hepatocytes, intestinal, and skin cells). Organ injury was diminished in asmase(-/-) hosts, and morbidity and mortality improved at 90 days after transplantation. Resistance to cytolytic T lymphocyte-induced apoptosis was found at the target cell membrane if hepatocytes lack ASMase, as hepatocyte apoptosis required target cell ceramide generation for formation of ceramide-rich macrodomains, sites concentrating proapoptotic Fas. These studies indicate a requirement for target cell ASMase in evolution of GVHD in liver, small intestines, and skin and provide potential new targets for disease management.


Subject(s)
Apoptosis/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Membrane/immunology , Ceramides/immunology , Graft vs Host Disease/immunology , Sphingomyelin Phosphodiesterase/physiology , T-Lymphocytes, Cytotoxic/immunology , Animals , Bone Marrow Transplantation , Cell Membrane/metabolism , Cell Membrane/pathology , Cytokines/metabolism , Disease Models, Animal , Female , Graft vs Host Disease/mortality , Graft vs Host Disease/pathology , Hepatocytes/immunology , Hepatocytes/metabolism , Interferon-gamma/metabolism , Intestine, Small/cytology , Intestine, Small/immunology , Intestine, Small/metabolism , Liver/cytology , Liver/immunology , Liver/metabolism , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Mice, SCID , Skin/cytology , Skin/immunology , Skin/metabolism , Survival Rate
13.
Blood ; 113(7): 1574-80, 2009 Feb 12.
Article in English | MEDLINE | ID: mdl-19011222

ABSTRACT

Keratinocyte growth factor (KGF), which is given exogenously to allogeneic bone marrow transplantation (allo-BMT) recipients, supports thymic epithelial cells and increases thymic output of naive T cells. Here, we demonstrate that this improved T-cell reconstitution leads to enhanced responses to DNA plasmid tumor vaccination. Tumor-bearing mice treated with KGF and DNA vaccination have improved long-term survival and decreased tumor burden after allo-BMT. When assayed before vaccination, KGF-treated allo-BMT recipients have increased numbers of peripheral T cells, including CD8(+) T cells with vaccine-recognition potential. In response to vaccination, KGF-treated allo-BMT recipients, compared with control subjects, generate increased numbers of tumor-specific CD8(+) cells, as well as increased numbers of CD8(+) cells producing interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). We also found unanticipated benefits to antitumor immunity with the administration of KGF. KGF-treated allo-BMT recipients have an improved ratio of T effector cells to regulatory T cells, a larger fraction of effector cells that display a central memory phenotype, and effector cells that are derived from a broader T-cell-receptor repertoire. In conclusion, our data suggest that KGF can function as a potent vaccine adjuvant after allo-BMT through its effects on posttransplantation T-cell reconstitution.


Subject(s)
Bone Marrow Transplantation/immunology , Cancer Vaccines/immunology , Fibroblast Growth Factor 7/pharmacology , Thymus Gland/drug effects , Vaccines, DNA/immunology , Animals , Bone Marrow Transplantation/methods , Bone Marrow Transplantation/mortality , CD4 Antigens/metabolism , CD8-Positive T-Lymphocytes/cytology , Cell Division/drug effects , Cell Division/immunology , Female , Forkhead Transcription Factors/metabolism , Immunologic Memory/drug effects , Immunologic Memory/immunology , Lymphocyte Count , Mice , Mice, Inbred C57BL , Plasmids , Survival Rate , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Thymus Gland/cytology , Thymus Gland/immunology , Transplantation Chimera , Transplantation, Homologous
14.
Nat Genet ; 53(5): 707-718, 2021 05.
Article in English | MEDLINE | ID: mdl-33846634

ABSTRACT

Most eukaryotes harbor two distinct pre-mRNA splicing machineries: the major spliceosome, which removes >99% of introns, and the minor spliceosome, which removes rare, evolutionarily conserved introns. Although hypothesized to serve important regulatory functions, physiologic roles of the minor spliceosome are not well understood. For example, the minor spliceosome component ZRSR2 is subject to recurrent, leukemia-associated mutations, yet functional connections among minor introns, hematopoiesis and cancers are unclear. Here, we identify that impaired minor intron excision via ZRSR2 loss enhances hematopoietic stem cell self-renewal. CRISPR screens mimicking nonsense-mediated decay of minor intron-containing mRNA species converged on LZTR1, a regulator of RAS-related GTPases. LZTR1 minor intron retention was also discovered in the RASopathy Noonan syndrome, due to intronic mutations disrupting splicing and diverse solid tumors. These data uncover minor intron recognition as a regulator of hematopoiesis, noncoding mutations within minor introns as potential cancer drivers and links among ZRSR2 mutations, LZTR1 regulation and leukemias.


Subject(s)
Genetic Predisposition to Disease , Hematologic Diseases/genetics , Introns/genetics , Neoplasms/genetics , Animals , Base Sequence , CRISPR-Cas Systems/genetics , Cell Self Renewal , Cell Transformation, Neoplastic/pathology , Clone Cells , Female , Genome, Human , Hematologic Diseases/pathology , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice, Knockout , Noonan Syndrome/genetics , Pedigree , RNA/metabolism , RNA Splicing/genetics , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Spleen/pathology , Transcription Factors/genetics
15.
Lancet Haematol ; 8(6): e422-e432, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34048681

ABSTRACT

Background Lenalidomide maintenance improves progression-free survival for patients with multiple myeloma, although its optimal duration is unknown. Clearance of minimal residual disease (MRD) in the bone marrow results in superior outcomes, although its attainment or sustainment does not alter clinical decision-making. Studies that have evaluated MRD serially are limited in length. We therefore aimed to evaluate longitudinal changes in MRD-status (dynamics) and their association with progression-free survival in patients with multiple myeloma. METHODS: In this single-centre, single-arm, phase 2 study, we enrolled patients aged 18 years and older from the Memorial Sloan Kettering Cancer Center (New York, NY, USA) who had newly diagnosed multiple myeloma following unrestricted frontline therapy and an Eastern Cooperative Oncology Group Performance Status of 2 or lower, including patients who started maintenance before study enrolment. All participants received lenalidomide maintenance at 10 mg for 21 days of 28-day cycles until progression or unacceptable toxic effects for up to 5 years on protocol. The primary endpoint was progression-free survival at 60 months per protocol and key secondary endpoints were MRD rates after completion of the 12th, 24th, and 36th cycle of maintenance and the association between progression-free survival and annual measurement of MRD status. MRD was assessed from first-pull bone marrow aspirates at baseline and annually by flow cytometry per International Myeloma Working Group criteria, (limit of detection of at least 1 × 10-5) up to a maximum of 5 years. Patients who completed at least four cycles of treatment were included in the analysis of the primary endpoint, and patients who had completed at least one dose of treatment on protocol were assessable for secondary endpoints. The study was registered at ClinicalTrials.gov, NCT02538198, and is now closed to accrual. FINDINGS: Between Sept 8, 2015, and Jan 25, 2019, 108 patients (100 evaluable for the primary endpoint) were enrolled. Median follow-up was 40·7 months (95% CI 38·7-45·0). At 60 months, progression-free survival was 64% (95% CI 52-79). Median progression-free survival was unreached (95% CI unreached-unreached). MRD dynamics were assessed using 340 MRD assessments done over 5 years for 103 evaluable patients. Patients who sustained MRD negativity for 2 years (n=34) had no recorded disease progression at median 19·8 months (95% CI 15·8-22·3) past the 2-year maintenance landmark. By contrast, patients who lost their MRD-negative responses (n=10) were more likely to progress than those with sustained MRD negativity (HR infinite; p<0·0001) and those with persistent MRD positivity (HR 5·88, 95% CI 1·18-33·33; p=0·015) at the 2-year landmark. Haematological and non-haematological serious adverse events occurred in 19 patients (18%). The most common adverse events of grade 3 or worse were decreased lymphocyte count in 48 (44%) patients and decreased neutrophil count in 47 (44%) patients. One death occurred on study due to sepsis and heart failure and was considered unrelated to the study drug. INTERPRETATION: Serial measurements of MRD allow for dynamic assessment of risk for disease progression. Early intervention should be investigated for patients with loss of MRD negativity. Sustained MRD positivity is not categorically an unfavourable outcome and might portend prolonged stability of low-level disease. FUNDING: Memorial Sloan Kettering and Celgene.


Subject(s)
Lenalidomide/therapeutic use , Multiple Myeloma/drug therapy , Administration, Oral , Aged , Drug Administration Schedule , Female , Follow-Up Studies , Humans , Male , Middle Aged , Multiple Myeloma/pathology , Neoplasm Grading , Neoplasm, Residual , Progression-Free Survival
16.
JAMA Oncol ; 7(6): 862-868, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33856405

ABSTRACT

IMPORTANCE: Recently, the benefit of adding daratumumab to the proteasome inhibitor-based, 3-drug combination of bortezomib, lenalidomide, and dexamethasone for patients with newly diagnosed multiple myeloma who underwent high-dose melphalan chemotherapy and autologous hemopoietic cell transplant was assessed. Here, we examine the addition of daratumumab to the second-generation proteasome inhibitor-based, 3-drug combination of carfilzomib, lenalidomide, and dexamethasone. OBJECTIVE: To assess the safety and effectiveness of carfilzomib-lenalidomide-dexamethasone-daratumumab combination therapy for patients with newly diagnosed multiple myeloma, in the absence of high-dose melphalan chemotherapy and autologous hemopoietic cell transplant. DESIGN, SETTING, AND PARTICIPANTS: Clinical and correlative pilot study at the Memorial Sloan Kettering Cancer Center in New York, New York. Patients with newly diagnosed multiple myeloma were enrolled between October 1, 2018, and November 15, 2019. The median follow-up from start of treatment was 20.3 months (95% CI, 19.2-21.9 months). INTERVENTIONS: Eight 28-day cycles with intravenous carfilzomib, 20/56 mg/m2 (days 1, 8, and 15); oral lenalidomide, 25 mg, (days 1-21); dexamethasone, 40 mg weekly, orally or intravenously (cycles 1-4), and 20 mg after cycle 4; and intravenous daratumumab, 16 mg/kg (days 1, 8, 15, and 22 [cycles 1-2]; days 1 and 15 [cycles 3-6]; and day 1 [cycles 7 and 8]). MAIN OUTCOMES AND MEASURES: The primary end point was the minimal residual disease (MRD) rate, in the absence of high-dose melphalan chemotherapy and autologous hemopoietic cell transplant. Secondary end points included determining safety and tolerability, evaluating rates of clinical response per the International Myeloma Working Group, and estimating progression-free survival (PFS) and overall survival (OS) rates. RESULTS: Forty-one evaluable patients were enrolled (median age, 59 years; range, 30-70 years); 25 (61%) were female, and 20 (49%) had high-risk multiple myeloma. The primary end point (MRD negativity in the bone marrow; 10-5 sensitivity) was achieved in 29 of 41 patients (71%; 95% CI, 54%-83%), and therefore the trial was deemed successful. Median time to MRD negativity was 6 cycles (range, 1-8 cycles). Secondary end points of the overall response rate and the very good partial response or complete response rate were 100% (41 of 41 patients) and 95% (39 of 41 patients), respectively. At 11 months of the median follow-up, the 1-year PFS rate and the OS rate were 98% (95% CI, 93%-100%) and 100%, respectively. Most common (≥2 patients) grade 3 or 4 adverse events were neutropenia (12 patients [27%]), rash (4 patients [9%]), lung infection (3 patients [7%]), and increased alanine aminotransferase level (2 patients [4%]). There were no deaths. CONCLUSIONS AND RELEVANCE: In this nonrandomized clinical trial, carfilzomib-lenalidomide-dexamethasone-daratumumab combination therapy was associated with high rates of MRD negativity in patients with newly diagnosed multiple myeloma and high rates of PFS.


Subject(s)
Multiple Myeloma , Antibodies, Monoclonal , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bortezomib , Dexamethasone , Female , Humans , Lenalidomide , Multiple Myeloma/diagnosis , Oligopeptides , Pilot Projects
17.
Biol Blood Marrow Transplant ; 16(1 Suppl): S138-45, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19857588

ABSTRACT

Disease relapse remains a major cause of mortality following allogeneic hematopoietic cell transplantation (HCT). Over the past decade, our understanding of the biology underlying the graft-versus-tumor/leukemia (GVT) effect has increased greatly; however, several other factors affect the occurrence and outcome of relapse, including conditioning regimen, type of allograft, and the histology, status, and sensitivity to chemotherapy of the disease being treated. The mainstay of relapse treatment is donor lymphocyte infusion (DLI), but the efficacy of DLI is quite variable depending on disease histology and state. As such, there is a significant need for novel therapies and strategies for relapse following allogeneic HCT, particularly in patients for whom DLI is not an option. The National Cancer Institute is sponsoring an international workshop to address issues and research questions relative to the biology, natural history, prevention, and treatment of relapse following allogeneic HCT.


Subject(s)
Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/methods , Animals , Graft vs Tumor Effect/immunology , Hematologic Neoplasms/mortality , Hematologic Neoplasms/prevention & control , Humans , Lymphocyte Transfusion , Secondary Prevention , T-Lymphocytes/immunology
18.
Blood ; 112(12): 4755-64, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18815289

ABSTRACT

Delayed T-cell recovery is an important complication of allogeneic bone marrow transplantation (BMT). We demonstrate in murine models that donor BM-derived T cells display increased apoptosis in recipients of allogeneic BMT with or without GVHD. Although this apoptosis was associated with a loss of Bcl-2 and Bcl-X(L) expression, allogeneic recipients of donor BM deficient in Fas-, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)- or Bax-, or BM-overexpressing Bcl-2 or Akt showed no decrease in apoptosis of peripheral donor-derived T cells. CD44 expression was associated with an increased percentage of BM-derived apoptotic CD4(+) and CD8(+) T cells. Transplantation of RAG-2-eGFP-transgenic BM revealed that proliferating eGFP(lo)CD44(hi) donor BM-derived mature T cells were more likely to undergo to apoptosis than nondivided eGFP(hi)CD44(lo) recent thymic emigrants in the periphery. Finally, experiments using carboxyfluorescein succinimidyl ester-labeled T cells adoptively transferred into irradiated syngeneic hosts revealed that rapid spontaneous proliferation (as opposed to slow homeostatic proliferation) and acquisition of a CD44(hi) phenotype was associated with increased apoptosis in T cells. We conclude that apoptosis of newly generated donor-derived peripheral T cells after an allogeneic BMT contributes to delayed T-cell reconstitution and is associated with CD44 expression and rapid spontaneous proliferation by donor BM-derived T cells.


Subject(s)
Apoptosis , Bone Marrow Transplantation , Cell Differentiation , Cell Proliferation , Hyaluronan Receptors/metabolism , T-Lymphocytes/physiology , Animals , Apoptosis/genetics , Apoptosis/immunology , Bone Marrow Transplantation/immunology , Bone Marrow Transplantation/rehabilitation , Cell Differentiation/physiology , Cells, Cultured , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/physiology , Time Factors , Transplantation, Homologous , bcl-2-Associated X Protein/genetics , fas Receptor/genetics , fas Receptor/physiology
19.
Blood ; 112(13): 5254-8, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18838616

ABSTRACT

Graft-versus-host disease (GVHD) is a serious complication of allogeneic bone marrow transplantation, and donor T cells are indispensable for GVHD. Current therapies have limited efficacy, selectivity, and high toxicities. We used a novel flow cytometry technique for the analysis of intracellular phosphorylation events in single cells in murine BMT models to identify and validate novel GVHD drug targets.(1-7) This method circumvents the requirement for large numbers of purified cells, unlike western blots. We defined a signaling profile for alloactivated T cells in vivo and identified the phosphorylation of ERK1/2 and STAT-3 as important events during T-cell (allo)activation in GVHD. We establish that interference with STAT-3 phosphorylation can inhibit T-cell activation and proliferation in vitro and GVHD in vivo. This suggests that phospho-specific flow cytometry is useful for the identification of promising drug targets, and ERK1/2 and STAT-3 phosphorylation in alloactivated T cells may be important for GVHD.


Subject(s)
Bone Marrow Transplantation/immunology , Graft vs Host Disease , Lymphocyte Activation , Mitogen-Activated Protein Kinase 3/metabolism , STAT3 Transcription Factor/metabolism , T-Lymphocytes/immunology , Animals , Flow Cytometry , Mice , Phosphorylation/immunology , Transplantation, Homologous
20.
Best Pract Res Clin Haematol ; 33(1): 101151, 2020 03.
Article in English | MEDLINE | ID: mdl-32139016

ABSTRACT

Over the course of the past decade-plus, the therapy of newly diagnosed multiple myeloma has seen incredible advances in the domains of diagnostic evaluation, active medical therapy, and response evaluation. This manuscript reviews the evaluation and management of newly diagnosed active multiple myeloma, with a focus on major clinical trials and IMWG recommendations. The paper describes a current approach for the initial evaluation and workup for patients with putative active myeloma, with consideration towards potential MRD-directed therapeutic approaches and future clinical trials, and then discusses management with a focus on induction regimens with attention primarily to modern three and four-drug combinations for transplant-eligible and transplant-ineligible patients, and those with organ dysfunction. Finally, this article briefly reviews minimal residual disease directed therapy approaches, primarily in the context of whether eligible patients should be referred for high dose chemotherapy and autologous stem cell rescue. Maintenance therapy for both transplant eligible and ineligible patients is discussed elsewhere in this issue.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Hematopoietic Stem Cell Transplantation , Lenalidomide/therapeutic use , Multiple Myeloma/drug therapy , Oligopeptides/therapeutic use , Bone Marrow/drug effects , Bone Marrow/immunology , Bone Marrow/pathology , Bortezomib/therapeutic use , Clinical Trials as Topic , Cyclophosphamide/therapeutic use , Dexamethasone/therapeutic use , Drug Administration Schedule , Humans , Melphalan/therapeutic use , Multiple Myeloma/diagnosis , Multiple Myeloma/immunology , Multiple Myeloma/mortality , Neoplasm, Residual , Plasma Cells/drug effects , Plasma Cells/immunology , Plasma Cells/pathology , Survival Analysis , Thalidomide/therapeutic use , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL