Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anal Methods ; 16(31): 5372-5390, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39037195

ABSTRACT

Personalized medical diagnostics and monitoring have become increasingly important due to inefficient and delayed medical services of traditional centralized healthcare systems. To enhance the comfort and portability, flexible health monitoring systems have been developed in recent years. In particular, smart fiber/textile-based sensing devices show superiority for continuously monitoring personal health and vital physiological parameters owing to their light weight, good flexibility and inherent miniaturization. This review focuses on the recent advances in smart fiber/textile-based sensing devices for wearable electronic applications. First, fabrication strategies of smart sensing fibers/textiles are introduced in detail. In addition, sensing performances, working principles and applications of smart sensing fibers/textiles such as pressure sensing fibers/textiles, stretchable strain sensing fibers/textiles, temperature sensing fibers/textiles, and biofluid, gas and humidity sensing fibers/textiles in health monitoring are also reviewed systematically. Finally, we propose current challenges and future prospects in the area of fiber/textile-based sensors for wearable healthcare monitoring and diagnosis systems. In general, this review aims to give an overall perspective of the promising field by reviewing various fiber/textile-based sensing devices and highlighting the importance for researchers to keep up with the sequential exploration of soft sensing fibers/textiles for applications in wearable smart systems.


Subject(s)
Textiles , Wearable Electronic Devices , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Precision Medicine/instrumentation , Precision Medicine/methods , Equipment Design , Biosensing Techniques/instrumentation , Biosensing Techniques/methods
2.
ACS Appl Mater Interfaces ; 12(10): 11825-11832, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32054269

ABSTRACT

Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS2) nanosheets on carbonized silk fabric (MoS2/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS2/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS2/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g-1, respectively. The MoS2/CSilk electrode exhibited a high capacity of 810 mA h g-1 with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS2/CSilk and the synergistic effect of CSilk and MoS2. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices.

3.
Nanoscale ; 11(24): 11856-11863, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31184686

ABSTRACT

Flexible enzymatic glucose sensors have been investigated extensively for health monitoring systems. However, enzymatic glucose sensors have some problems, such as poor stability and complicated immobilization procedures. Rational and controllable design of nanomaterials with a unique structure, high activity and good electrochemical performance for nonenzymatic glucose sensors is desired critically. In this paper, we synthesize cuprous oxide nanoparticles embedded in carbon spheres directly on carbonized silk fabrics (Cu2O NPs@CSs/CSF), which is further used for the fabrication of a flexible and self-supported non-enzymatic glucose sensor. The Cu2O NPs@CSs/CSF shows good electrical conductivity due to the large contact area and the stable connection between the carbonized silk fabrics and carbon spheres. We demonstrate that the as-obtained non-enzymatic glucose sensor possesses high sensitivity and good stability, indicating its potential for practical applications. This strategy diversifies the toolbox available to the field of nonenzymatic glucose sensors and holds promise for flexible electronic devices.


Subject(s)
Carbon/chemistry , Copper/chemistry , Electrochemical Techniques , Glucose/analysis , Silk/chemistry , Textiles
4.
Sci Adv ; 5(11): eaax0649, 2019 11.
Article in English | MEDLINE | ID: mdl-31723600

ABSTRACT

Wearable sweat analysis devices for monitoring of multiple health-related biomarkers with high sensitivity are highly desired for noninvasive and real-time monitoring of human health. Here, we report a flexible sweat analysis patch based on a silk fabric-derived carbon textile for simultaneous detection of six health-related biomarkers. The intrinsically N-doped graphitic structure and the hierarchical woven, porous structure provided the carbon textile good electrical conductivity, rich active sites, and good water wettability for efficient electron transmission and abundant access to reactants, enabling it to serve as an excellent working electrode in electrochemical sensors. On the basis of the above, we fabricated a multiplex sweat analysis patch that is capable of simultaneous detection of glucose, lactate, ascorbic acid, uric acid, Na+, and K+. The integration of selective detectors with signal collection and transmission components in this device has enabled us to realize real-time analysis of sweat.


Subject(s)
Biosensing Techniques , Sweat/chemistry , Textiles , Wearable Electronic Devices , Electrochemical Techniques , Equipment Design , Humans
SELECTION OF CITATIONS
SEARCH DETAIL