Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Phys Rev Lett ; 132(23): 233802, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905673

ABSTRACT

Non-line-of-sight (NLOS) imaging has the ability to reconstruct hidden objects, allowing a wide range of applications. Existing NLOS systems rely on pulsed lasers and time-resolved single-photon detectors to capture the information encoded in the time of flight of scattered photons. Despite remarkable advances, the pulsed time-of-flight LIDAR approach has limited temporal resolution and struggles to detect the frequency-associated information directly. Here, we propose and demonstrate the coherent scheme-frequency-modulated continuous wave calibrated by optical frequency comb-for high-resolution NLOS imaging, velocimetry, and vibrometry. Our comb-calibrated coherent sensor presents a system temporal resolution at subpicosecond and its superior signal-to-noise ratio permits NLOS imaging of complex scenes under strong ambient light. We show the capability of NLOS localization and 3D imaging at submillimeter scale and demonstrate NLOS vibrometry sensing at an accuracy of dozen Hertz. Our approach unlocks the coherent LIDAR techniques for widespread use in imaging science and optical sensing.

2.
Anal Bioanal Chem ; 413(2): 389-401, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33145646

ABSTRACT

Because of its widespread distribution in the environment, bisphenol A (BPA) has become a global concern as an endocrine disruptor and a threat to human health through the food chain. Thus an efficient determination method is urgently needed for monitoring the levels of BPA. Herein, a novel electrochemical technique for the detection of BPA was performed by synchronous extraction and pre-concentration of BPA onto magnetic molecularly imprinted polymer (BMMIP), with subsequent readout on a magneto-actuated glassy carbon electrode (MGCE) by differential pulse voltammetry. Compared to the current methods of BPA determination, this BMMIP-based electrochemical sensor (BMMIPs@MGCE) not only simplifies the sample handling procedures substantially, without filtration, centrifugation, or other complex operations, but also can be easily renewed by a controllable magnetic field. As a sensor component, the core-shell BMMIPs exhibited excellent binding capacity (Qe = 82.5 mg g-1), short adsorption equilibrium time (30 s), and outstanding selectivity (k' = 7.239) towards BPA, as well as stability and recyclability. Importantly, the BMMIPs@MGCE sensor was successfully applied for the on-site monitoring and rapid detection of BPA in complicated real-world specimens, with good recoveries (81.31-119.77%) and a low limit of detection (0.133 µmol L-1). Therefore, the stable and low-cost BMMIPs@MGCE sensor provides a new approach for the rapid determination of BPA in the field of environmental control and food safety. Graphical abstract.

3.
Sensors (Basel) ; 20(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228249

ABSTRACT

A surface acoustic wave (SAW) sensor was investigated for its application in C-reactive protein (CRP) detection. Piezoelectric lithium niobate (LiNbO3) substrates were used to study their frequency response characteristics in a SAW sensor with a CRP sensing area. After the fabrication of the SAW sensor, the immobilization process was performed for CRP/anti-CRP interaction. The CRP/anti-CRP interaction can be detected as mass variations in the sensing area. These mass variations may produce changes in the amplitude of sensor response. It was clearly observed that a CRP concentration of 0.1 µg/mL can be detected in the proposed SAW sensor. A good fitting linear relationship between the detected insertion loss (amplitude) and the concentrations of CRP from 0.1 µg/mL to 1 mg/mL was obtained. The detected shifts in the amplitude of insertion loss in SAW sensors for different CRP concentrations may be useful in the diagnosis of risk of cardiovascular diseases.


Subject(s)
C-Reactive Protein , Cardiovascular Diseases , Sound , C-Reactive Protein/analysis , Cardiovascular Diseases/diagnosis
4.
Ecotoxicol Environ Saf ; 177: 66-76, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-30974245

ABSTRACT

A novel magnetic MIPs (DUMIPs) was prepared by surface molecular imprinting method using superparamagnetic core-shell nanoparticle (Fe3O4@SiO2) as the sacrificial support matrix, herbicide diuron as template, α-methacrylic acid as the functional monomer, trimethylolpropane trimethacrylate as the crosslinker, azobisisobutyronitrile as the initiator, and acetonitrile as the porogen. Highly cross-linked porous surface and excellent magnetic property were characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometer, respectively. The adsorption capacity of DUMIPs was 8.1 mg g-1, 2.6-fold over its corresponding non-imprinted polymers (DUNIPs). The adsorption in DUMIPs was considered as multilayer adsorption and posed high affinity to diuron, due to the better fitting to Freundilich isotherm. Competitive recognition study demonstrated DUMIPs had highly selective binding diuron. DUMIPs, as an influential sorbent has been used for selective extraction of diuron from environmental samples (paddy field water, paddy soil and grain seedlings) and the elution was determined by high efficiency liquid chromatography (HPLC). In this analytical method, various factors affecting the extraction efficiency such as pH, sorbent dosage, utilization efficiency and volumes of eluent were simultaneously investigated. Under the optimal conditions, the linearity of the method obtained is in the range of 0.02-10.0 mg L-1. The limit of detection is 0.012 mg L-1. In four spiked levels (0.04, 0.2, 1.0, and 4.0 mg kg-1), the recoveries of diuron in real samples are in the range of 83.56%-116.10% with relative standard deviations in the range of 1.21-6.81%. Importantly, compared to C18-SPE column, the MMIPs exhibited convenient separation by external magnetic field, strong clean-up capacity, and selective enrichment for diuron. Thus, the DUMIPs-based method is great potential for efficient sample preparation in the determination of trace amounts of diuron residues in complex matrices.


Subject(s)
Diuron/analysis , Herbicides/analysis , Molecular Imprinting/methods , Adsorption , Chromatography, High Pressure Liquid/methods , Diuron/chemistry , Herbicides/chemistry , Magnetics , Methacrylates/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Porosity , Silicon Dioxide/chemistry , Water/chemistry
5.
Nanotechnology ; 29(27): 275704, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29664736

ABSTRACT

Photocurrent extraction and electron injection in CH3NH3PbBr3 (MAPbBr3) perovskite-based optoelectronic devices are both significantly increased by improving the contact at the PCBM/MAPbBr3 interface with an extended solvent annealing (ESA) process. Photoluminescence quenching and x-ray diffraction experiments show that the ESA not only improves the contact at the PCBM/MAPbBr3 interface but also increases the crystallinity of the MAPbBr3 thin films. The optimized dual-functional PCBM-MAPbBr3 heterojunction based optoelectronic device has a high power conversion efficiency of 4.08% and a bright visible luminescence of 1509 cd m-2. In addition, the modulation speed of the MAPbBr3 based light-emitting diodes is larger than 14 MHz, which indicates that the defect density in the MAPbBr3 thin film can be effectively reduced by using the ESA process.

6.
Environ Sci Technol ; 51(19): 11258-11268, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28872855

ABSTRACT

Atrazine (ATZ) residue in farmland is one of the environmental contaminants seriously affecting crop production and food safety. Understanding the regulatory mechanism for ATZ metabolism and degradation in plants is important to help reduce ATZ potential toxicity to both plants and human health. Here, we report our newly developed engineered rice overexpressing a novel Phase II metabolic enzyme glycosyltransfearse1 (ARGT1) responsible for transformation of ATZ residues in rice. Our results showed that transformed lines, when exposed to environmentally realistic ATZ concentration (0.2-0.8 mg/L), displayed significantly high tolerance, with 8-27% biomass and 36-56% chlorophyll content higher, but 37-69% plasma membrane injury lower than untransformed lines. Such results were well confirmed by ARGT1 expression in Arabidopsis. ARGT1-transformed rice took up 1.6-2.7 fold ATZ from its growth medium compared to its wild type (WT) and accumulated ATZ 10%-43% less than that of WT. A long-term study also showed that ATZ in the grains of ARGT1-transformed rice was reduced by 30-40% compared to WT. The ATZ-degraded products were characterized by UPLC/Q-TOF-MS/MS. More ATZ metabolites and conjugates accumulated in ARGT1-transformed rice than in WT. Eight ATZ metabolites for Phase I reaction and 10 conjugates for Phase II reaction in rice were identified, with three ATZ-glycosylated conjugates that have never been reported before. These results indicate that ARGT1 expression can facilitate uptake of ATZ from environment and metabolism in rice plants.


Subject(s)
Atrazine , Oryza , Pesticide Residues , Chlorophyll , Inactivation, Metabolic , Tandem Mass Spectrometry
7.
Ecotoxicol Environ Saf ; 140: 264-270, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28279883

ABSTRACT

Ametryn is a selective herbicide belonging to the triazine family and widely used for killing annual grasses or weeds in China and other parts of the world. However, reports on its environmental risk assessment with regard to soil and crop contamination are limited. In this study, accumulation of ametryn in wheat, maize, ryegrass and alfalfa crops along with ametryn residues in the soil planted with the plants were comparatively investigated. Soil enzyme activities and low molecular weight organic acids (LMWOAs), as well as antioxidant and degradation enzyme activities in plant tissues were measured. The maximum accumulation of ametryn was found in shoots and roots of wheat and alfalfa. Ryegrass had the maximum ametryn translocation factor (TF) from roots to shoots, with more than three times over the other crops. The ametryn residue in ryegrass-planted soil was much lower than that in soil planted with others. The residual content of ametryn in crop-planted soils was ordered as rhizosphere soil

Subject(s)
Herbicides/metabolism , Lolium/metabolism , Medicago sativa/metabolism , Triazines/metabolism , Triticum/metabolism , Zea mays/metabolism , Biodegradation, Environmental , China , Glutathione Transferase/metabolism , Plant Roots/metabolism , Rhizosphere , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis
8.
Ecotoxicol Environ Saf ; 145: 398-407, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28763756

ABSTRACT

Propazine is a s-triazine herbicide widely used for controlling weeds for crop production. Its persistence and contamination in environment nagatively affect crop growth and food safety. Elimination of propazine residues in the environment is critical for safe crop production. This study identified a microbial community able to degrade propazine in a farmland soil. About 94% of the applied propazine was degraded within 11 days of incubation when soil was treated with 10mgkg-1 propazine as the initial concentration. The process was accompanied by increased microbial biomass and activities of soil enzymes. Denaturing gradient gel electrophoresis (DGGE) revealed multiple bacterial strains in the community as well as dynamic change of the composition of microbial community with a reduced microbial diversity (H' from 3.325 to 2.78). Tracking the transcript level of degradative genes AtzB, AtzC and TrzN showed that these genes were induced by propazine and played important roles in the degradation process. The activities of catalase, dehydrogenase and phenol oxidase were stimulated by propazine exposure. Five degradation products (hydroxyl-, methylated-, dimeric-propazine, ammeline and ammelide) were characterized by UPLC-MS2, revealing a biodegradation of propazine in soil. Several novel methylated and dimeric products of propazine were characterized in thepropazine-exposed soil. These data help understand the pathway, detailed mechanism and efficiency of propazine biodegradation in soil under realistic field condition.


Subject(s)
Microbial Consortia , Soil Microbiology , Soil Pollutants/analysis , Soil/chemistry , Triazines/analysis , Biodegradation, Environmental , Biomass , Denaturing Gradient Gel Electrophoresis , Genes, Bacterial , Microbial Consortia/genetics , Soil Pollutants/metabolism , Triazines/metabolism
9.
Hu Li Za Zhi ; 64(6): 19-25, 2017 Dec.
Article in Zh | MEDLINE | ID: mdl-29164543

ABSTRACT

The development of science and technology has fundamentally changed people's lives and the way that medical systems function. Increasingly, mobile technologies are being introduced and integrated into classroom teaching and clinical applications, resulting in healthcare providers introducing innovative applications into health education. These applications enhance the clinical, education, and research expertise of medical staffs and nurses, while improving quality of care and providing new experiences for patients. In order to understand the current situation and trends in nursing education, the present study adopted literature analysis to explore the influence and effect of mobile technologies that have been introduced into nursing education from the school and clinical environments. The results found that students hold positive attitudes toward introducing these technologies into their curricula. Although these technologies may increase the work efficiency of nurses in the workplace, questions remain user perceptions and professional expression. Therefore, securing patient agreement and healthcare system approval were major turning points in the introduction of mobile technologies into nursing education. In the future, adapting mobile technologies for use in teaching materials and courses may be further developed. Moreover, empirical studies may be used in future research in order to facilitate the increasingly successful integration of relevant technologies into nursing education.


Subject(s)
Computer-Assisted Instruction , Education, Distance , Education, Nursing , Humans
10.
Ecotoxicol Environ Saf ; 130: 103-12, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27092973

ABSTRACT

Plants are constantly exposed to a variety of toxic compounds (or xenobiotics) such as pesticides (or herbicides). Atrazine (ATZ) as herbicide has become one of the environmental contaminants due to its intensive use during crop production. Plants have evolved strategies to cope with the adverse impact of ATZ. However, the mechanism for ATZ degradation and detoxification in plants is largely unknown. Here we employed a global RNA-sequencing (RNA-Seq) strategy to dissect transcriptome variation in alfalfa (Medicago sativa) exposed to ATZ. Four libraries were constructed including Root-ATZ (root control, ATZ-free), Shoot-ATZ, Root+ATZ (root treated with ATZ) and Shoot+ATZ. Hierarchical clustering was performed to display the expression patterns for all differentially expressed genes (DEGs) under ATZ exposure. Transcripts involved in ATZ detoxification, stress responses (e.g. oxidation and reduction, conjugation and hydrolytic reactions), and regulations of cysteine biosynthesis were identified. Several genes encoding glycosyltransferases, glutathione S-transferases or ABC transporters were up-regulated notably. Also, many other genes involved in oxidation-reduction, conjugation, and hydrolysis for herbicide degradation were differentially expressed. These results suggest that ATZ in alfalfa can be detoxified or degraded through different pathways. The expression patterns of some DEGs by high-throughput sequencing were well confirmed by qRT-PCR. Our results not only highlight the transcriptional complexity in alfalfa exposed to ATZ but represent a major improvement for analyzing transcriptional changes on a large scale as well.


Subject(s)
Atrazine/toxicity , Herbicides/toxicity , Medicago sativa/drug effects , Transcriptome/drug effects , Atrazine/pharmacokinetics , Environmental Pollution , Gene Expression Profiling , Gene Regulatory Networks , Herbicides/pharmacokinetics , Inactivation, Metabolic , Medicago sativa/metabolism , Plant Roots/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA
11.
Ecotoxicol Environ Saf ; 102: 105-12, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24530725

ABSTRACT

Atrazine is one of the most widely used herbicides for controlling weeds and grasses. Due to its intensive use, it has become a serious contaminant in soil and water. To evaluate impact of atrazine on graminaceous crops, experiments focusing on atrazine accumulation and toxic response in rice (Oryza sativa) were carried out. Treatment with atrazine at 0.05-0.8 mg L(-1) for 6 d reduced elongation of shoot and root. Compared with a mock treatment, the elongation of shoot with atrazine was 67.1 percent of the control, whereas that of root was 79.5 percent, indicating that the shoot was more affected than the root. Atrazine was readily absorbed by rice from media. Although the quantitative absorption of atrazine was positively correlated with the external supply of the herbicide, translocation of atrazine from roots to the above-ground was reduced from 39.88±6.26 (at 0.05 mg L(-1)) to 9.25±0.27 (0.8 mg L(-1)). While accumulation of atrazine in rice plants led to toxic responses such as over-generation of hydrogen peroxide and superoxide anions, it triggered the plant defense system against the herbicide-induced oxidative stress. This was best presented by the enhanced activities of several antioxidant enzymes (e.g. superoxide dismutase, catalase and peroxidase) and expression of genes responsible for the tolerance to atrazine toxicity.


Subject(s)
Atrazine/metabolism , Atrazine/toxicity , Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Oryza/drug effects , Oryza/metabolism , Catalase/metabolism , Enzyme Activation/drug effects , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Oryza/enzymology , Oryza/genetics , Oxidative Stress/drug effects , Peroxidases/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Superoxide Dismutase/metabolism
12.
J Agric Food Chem ; 71(20): 7891-7903, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37164944

ABSTRACT

Organophosphorus magnetic molecularly imprinted polymers (OMMIPs) with high adsorption capacities (13.5-83.8 mg g-1) and good applicability were developed for efficient extraction and pre-concentration of multiple organophosphorus pesticides (OPPs) from foodstuffs. The OMMIP-based sample pretreatment coupled with low-temperature plasma ambient ionization mass spectrometry achieved rapid screening for 90 kinds of pesticides at default maximum residue limits of National Standard (GB 2763-2021) in nine types of agro-products. The OMMIP-based liquid chromatography coupled with triple quadrupole mass spectroscopy assay demonstrated rapid magneto-actuated isolation, efficient removal of matrix interference, and reduced signal suppression, resulting in a short detection time (30 min), compliant recoveries (60.1-127.5%), low detection limits (0.0001-0.073 µg g-1), and simultaneous quantification of multi-pesticides. The yolk-shell-structured OMMIPs (Fe3O4@mTiO2@MIPs) demonstrated additional benefits of excellent ultraviolet light-driven catalytic degradation activity toward OPPs, making them eco-friendly for self-cleaning regeneration and reducing laboratory pesticide discharge. This work highlights the potential of OMMIPs for high-throughput and in situ pesticide monitoring in modern large-scale agricultural markets.


Subject(s)
Pesticide Residues , Pesticides , Pesticides/analysis , Organophosphorus Compounds/analysis , Pesticide Residues/analysis , High-Throughput Screening Assays , Ultraviolet Rays , Mass Spectrometry , Chromatography, Liquid/methods , Solid Phase Extraction/methods
13.
Transl Oncol ; 18: 101304, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35144091

ABSTRACT

BACKGROUND: Radiotherapy resistance is one of the major causes of rectal cancer treatment failure. LncRNA DLGAP1-AS2 participates in the progression of several cancers. We explored the role and potential mechanism of DLGAP1-AS2 in the radioresistance of rectal cancer stem cells. METHODS: HR8348-R cells, radioresistant cells from HR8348 after irradiation, were isolated into CD133 negative (CD133-) and positive (CD133+) cells. Cell proliferation, apoptosis, migration and tumorsphere formation were determined by CCK-8, flow cytometry, wound healing assay and tumorsphere formation assay, respectively. CD133, tumor stem cell drug resistance gene (MDR1 and BCRP1), DNA repair marker (γ-H2AX) and AKT/mTOR/cyclinD1 signaling were measured by Western blot. The relationship between DLGAP1-AS2 and E2F1 was verified using RIP. The interaction between E2F1 and CD151 promoter was confirmed using dual-luciferase reporter gene assay and ChIP. AKT inhibitor API-2 was employed for validating the effect of AKT/mTOR/cyclinD1 signaling in the radioresistance of rectal cancer cells. RESULTS: The DLGAP1-AS2 level was increased in CD133+ cells after irradiation. DLGAP1-AS2 knockdown inhibited the proliferation, migration and tumorsphere formation while stimulating apoptosis in CD133+ cells. DLGAP1-AS2 inhibition downregulated the expression of CD133, MDR1, BCRP1 and γ-H2AX and suppressed AKT/mTOR/cyclinD1 activation. DLGAP1-AS2 upregulated the expression of CD151 by interacting with E2F1. API-2 neutralized the promotive effects of overexpressed CD151 on radioresistance. CONCLUSION: DLGAP1-AS2 accelerates the radioresistance of rectal cancer cells through interactions with E2F1 to upregulate CD151 expression via the activation of the AKT/mTOR/cyclinD1 pathway.

14.
J Mol Model ; 28(11): 360, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36227347

ABSTRACT

The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4-70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε-O8 is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε-O8 remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε-O8 in the pressure range of 11.4-70 GPa. The results show that the band gap of ε-O8 decreases with increasing pressure. Notably, the band gap disappears within the range of 50-60 GPa, which reveals that the metallic phase transition occurs within this pressure range.

15.
J Agric Food Chem ; 70(45): 14352-14366, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36326728

ABSTRACT

Diuron [DU; 3-(3,4-dichlorophenyl)-1,1-dimethylurea], a widely used herbicide for weed control, arouses ecological and health risks due to its environment persistence. Our findings revealed that DU at 0.125-2.0 mg L-1 caused oxidative damage to rice. RNA-sequencing profiles disclosed a globally genetic expression landscape of rice under DU treatment. DU mediated downregulated gene encoding photosynthesis and biosynthesis of protein, fatty acid, and carbohydrate. Conversely, it induced the upregulation of numerous genes involved in xenobiotic metabolism, detoxification, and anti-oxidation. Furthermore, 15 DU metabolites produced by metabolic genes were identified, 7 of which include two Phase I-based and 5 Phase II-based derivatives, were reported for the first time. The changes of resistance-related phytohormones, like JA, ABA, and SA, in terms of their contents and molecular-regulated signaling pathways positively responded to DU stress. Our work provides a molecular-scale perspective on the response of rice to DU toxicity and clarifies the biotransformation and degradation fate of DU in rice crops.


Subject(s)
Herbicides , Oryza , Diuron/metabolism , Oryza/genetics , Oryza/metabolism , Herbicides/pharmacology , Herbicides/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Oxidative Stress , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant
16.
World J Gastroenterol ; 27(43): 7530-7545, 2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34887647

ABSTRACT

BACKGROUND: Severe acute pancreatitis (SAP) is a deadly inflammatory disease with complex pathogenesis and lack of effective therapeutic options. N6-methyladenosine (m6A) modification of circRNAs plays important roles in physiological and pathological processes. However, the roles of m6A circRNA in the pathological process of SAP remains unknown. AIM: To identify transcriptome-wide map of m6A circRNAs and to determine their biological significance and potential mechanisms in SAP. METHODS: The SAP in C57BL/6 mice was induced using 4% sodium taurocholate salt. The transcriptome-wide map of m6A circRNAs was identified by m6A-modified RNA immunoprecipitation sequencing. The biological significance of circRNAs with differentially expressed m6A peaks was evaluated through gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The underlying mechanism of m6A circRNAs in SAP was analyzed by constructing of m6A circRNA-microRNA networks. The expression of demethylases was determined by quantitative polymerase chain reaction and western blot to deduce the possible mechanism of reversible m6A process in SAP. RESULTS: Fifty-seven circRNAs with differentially expressed m6A peaks were identified by m6A-modified RNA immunoprecipitation sequencing, of which 32 were upregulated and 25 downregulated. Functional analysis of these m6A circRNAs in SAP found some important pathways involved in the pathogenesis of SAP, such as regulation of autophagy and protein digestion. In m6A circRNA-miRNA networks, several important miRNAs participated in the occurrence and progression of SAP were found to bind to these m6A circRNAs, such as miR-24-3p, miR-26a, miR-92b, miR-216b, miR-324-5p and miR-762. Notably, the total m6A level of circRNAs was reduced, while the demethylase alkylation repair homolog 5 was upregulated in SAP. CONCLUSION: m6A modification of circRNAs may be involved in the pathogenesis of SAP. Our findings may provide novel insights to explore the possible pathogenetic mechanism of SAP and seek new potential therapeutic targets for SAP.


Subject(s)
MicroRNAs , Pancreatitis , Acute Disease , Adenosine/analogs & derivatives , Animals , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Pancreatitis/chemically induced , Pancreatitis/genetics , RNA, Circular
17.
Chemosphere ; 238: 124640, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31524609

ABSTRACT

Triclosan (TCS) is a kind of chronic toxicity to aquatic organisms. Due to its highly effective antimicrobial, TCS has been widely applied in personal-care products, which naturally poses a potential risk to the ecological system and human health since its release into water-ecological environment. Therefore, it urgently demands a selective, easily separated, recyclable, and low-cost adsorbent to remove the residues of TCS from aquatic environments. In this study, a novel magnetic molecularly imprinted nano-polymers (TMIPs) were prepared for selective adsorption and convenient collection of TCS in aquatic samples, based on a core-shell technique using TCS as template molecule and SiO2-coated Fe3O4 nanoparticles as the support substrate. The functional groups, particle size, morphology and magnetic property of TMIPs were characterized by Fourier-transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy and vibrating sample magnetometer, respectively. The obtained TMIPs possessed excellent adsorption capacity (Qe = 53.12 mg g-1), speedy adsorption equilibrium time (2 min) and high selectivity (k' = 6.321) for TCS. Moreover, the pH-tolerance and stability tests manifested that the adsorption capacity of TMIPs for TCS was acid-resistance and could retain 94.2% of the maximum Qe after 5 times removal-regeneration cycles. The feature of magnetically susceptibility can simplify the procedures of sample handling in TCS determination, because the TMIPs of TCS are easy to be recycled from aquatic samples. As an application demonstration, the toxicity test in microalgae confirmed that a tiny amount of TMIPs could significantly eliminate the toxic effect of TCS on Chlamydomonas reinhardtii via the efficient binding with TCS.


Subject(s)
Magnetics/methods , Molecular Imprinting , Nanoparticles/chemistry , Triclosan/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/toxicity , Cosmetics/chemistry , Cosmetics/toxicity , Molecular Imprinting/methods , Particle Size , Polymers/chemistry , Silicon Dioxide/chemistry , Triclosan/toxicity
18.
Nanoscale ; 12(6): 4061-4068, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32022049

ABSTRACT

Bright and fast-response CH3NH3PbBr3 perovskite light-emitting diodes (PeLEDs) are realized by using ICBA:modified C60 (MC60) nanocomposites as the hole blocking layer (HBL) and electron transport layer (ETL). The photoluminescence spectrum shows that the use of hydrophilic MC60 in the ETL helps the surface passivation of the perovskite layer. In addition, the photoelectron spectra and water-droplet contact angle images show that the use of the ICBA:MC60 nanocomposite ETL can simultaneously confine the electrons and holes in the perovskite layer, which boosts the injected electron-hole radiative recombination efficiency and thereby increases the electroluminescence from 1 cd m-2 to 2080 cd m-2 at 6 V when the ICBA:3,5OEC60 nanocomposite ETL is used. In addition, the operational frequency of the optimal PeLED is up to 1.5 MHz.

19.
Environ Sci Pollut Res Int ; 27(10): 11246-11259, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31960244

ABSTRACT

Triclosan (TCS) is a broad-spectrum antimicrobial agent that is broadly used in personal care products. It has been shown to cause the contamination of a variety of aquatic environments. Since algae has been the primary producers of aquatic ecosystems, understanding the toxicological mechanisms and the metabolic fate of TCS is vital for assessing its risk in an aquatic environment. In our study, 0.5-4 mg L-1 TCS treatments for 72 h in a culture of Chlamydomonas reinhardtii (C. reinhardtii) showed progressive inhibition of cell growth and reduced the chlorophyll content. The EC50 value of C. reinhardtii after 72 h was 1.637 mg L-1, which showed its higher level of resistance to TCS in comparison with other algal species. The exposure to TCS led to oxidative injuries of algae in relation to the increment of malonaldehyde content, cell membrane permeability, and H2O2 levels. Furthermore, the oxidative stress from TCS stimulated a series of antioxidant enzyme activities and their gene expressions. Simultaneously, the accumulated TCS in C. reinhardtii arouses the detoxification/degradation-related enzymes and related gene transcriptions. In the medium, approximately 82% of TCS was removed by C. reinhardtii. Importantly, eight TCS metabolites were identified by ultra-performance liquid chromatography-high-resolution mass spectrometry and their relative abundances were measured in a time-course experiment. Six of these metabolites are reported here for the first time. The metabolic pathways of triclosan via C. reinhardtii including reductive dechlorination, hydroxylation, sulfhydrylation, and binding with thiol/cysteine/GSH/glycosyl were manifested to broaden our understanding of the environmental fate of TCS. Graphical Abstract.


Subject(s)
Chlamydomonas reinhardtii , Triclosan/analysis , Water Pollutants, Chemical/analysis , Bioaccumulation , Ecosystem , Hydrogen Peroxide
20.
Nanotechnology ; 20(21): 215501, 2009 May 27.
Article in English | MEDLINE | ID: mdl-19423930

ABSTRACT

Dengue virus (DENV) is nowadays the most important arthropod-spread virus affecting humans existing in more than 100 countries worldwide. A rapid and sensitive detection method for the early diagnosis of infectious dengue virus urgently needs to be developed. In the present study, a circulating-flow quartz crystal microbalance (QCM) biosensing method combining oligonucleotide-functionalized gold nanoparticles (i.e. AuNP probes) used to detect DENV has been established. In the DNA-QCM method, two kinds of specific AuNP probes were linked by the target sequences onto the QCM chip to amplify the detection signal, i.e. oscillatory frequency change (DeltaF) of the QCM sensor. The target sequences amplified from the DENV genome act as a bridge for the layer-by-layer AuNP probes' hybridization in the method. Besides being amplifiers of the detection signal, the specific AuNP probes used in the DNA-QCM method also play the role of verifiers to specifically recognize their target sequences in the detection. The effect of four AuNP sizes on the layer-by-layer hybridization has been evaluated and it is found that 13 nm AuNPs collocated with 13 nm AuNPs showed the best hybridization efficiency. According to the nanoparticle application, the DNA-QCM biosensing method was able to detect dengue viral RNA in virus-contaminated serum as plaque titers being 2 PFU ml(-1) and a linear correlation (R(2) = 0.987) of DeltaF versus virus titration from 2 x 10(0) to 2 x 10(6) PFU ml(-1) was found. The sensitivity and specificity of the present DNA-QCM method with nanoparticle technology showed it to be comparable to the fluorescent real-time PCR methods. Moreover, the method described herein was shown to not require expensive equipment, was label-free and highly sensitive.


Subject(s)
Biosensing Techniques/instrumentation , DNA, Viral/analysis , Dengue Virus/isolation & purification , Gold/chemistry , Micro-Electrical-Mechanical Systems/instrumentation , Nanostructures/chemistry , Nanotechnology/instrumentation , Crystallization/methods , DNA, Viral/genetics , Dengue Virus/genetics , Equipment Design , Equipment Failure Analysis , Materials Testing , Nanostructures/ultrastructure , Particle Size , Quartz/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL