Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
BMC Plant Biol ; 24(1): 78, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38287275

ABSTRACT

BACKGROUND: Annexin (ANN) is calcium (Ca2+)-dependent and phospholipid binding protein family, which is involved in plant growth and development and response to various stresses. However, little known about ANN genes were identified from crape myrtle, an ornamental horticultural plant widely cultivated in the world. RESULTS: Here, 9 LiANN genes were identified from Lagerstroemia indica, and their characterizations and functions were investigated in L. indica for the first time. The LiANN genes were divided into 2 subfamilies. The gene structure, chromosomal location, and collinearity relationship were also explored. In addition, the GO annotation analysis of these LiANNs indicated that they are enriched in molecular functions, cellular components, and biological processes. Moreover, transcription factors (TFs) prediction analysis revealed that bHLH, MYB, NAC, and other TFs can interact with the LiANN promoters. Interestingly, the LiANN2/4/6-9 were demonstrated to play critical roles in the branching architecture of crape myrtle. Furthermore, the LiANN2/6/8/9 were differentially expressed under salt treatment, and a series of TFs regulating LiANN2/6/8/9 expression were predicted to play essential roles in salt resistance. CONCLUSIONS: These results shed light on profile and function of the LiANN gene family, and lay a foundation for further studies of the LiANN genes.


Subject(s)
Lagerstroemia , Myrtus , Lagerstroemia/genetics , Annexins/genetics , Transcription Factors/genetics , Salt Stress/genetics , Gene Expression Regulation, Plant , Phylogeny
2.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409235

ABSTRACT

Identifying new disease indications for existing drugs can help facilitate drug development and reduce development cost. The previous drug-disease association prediction methods focused on data about drugs and diseases from multiple sources. However, they did not deeply integrate the neighbor topological information of drug and disease nodes from various meta-path perspectives. We propose a prediction method called NAPred to encode and integrate meta-path-level neighbor topologies, multiple kinds of drug attributes, and drug-related and disease-related similarities and associations. The multiple kinds of similarities between drugs reflect the degrees of similarity between two drugs from different perspectives. Therefore, we constructed three drug-disease heterogeneous networks according to these drug similarities, respectively. A learning framework based on fully connected neural networks and a convolutional neural network with an attention mechanism is proposed to learn information of the neighbor nodes of a pair of drug and disease nodes. The multiple neighbor sets composed of different kinds of nodes were formed respectively based on meta-paths with different semantics and different scales. We established the attention mechanisms at the neighbor-scale level and at the neighbor topology level to learn enhanced neighbor feature representations and enhanced neighbor topological representations. A convolutional-autoencoder-based module is proposed to encode the attributes of the drug-disease pair in three heterogeneous networks. Extensive experimental results indicated that NAPred outperformed several state-of-the-art methods for drug-disease association prediction, and the improved recall rates demonstrated that NAPred was able to retrieve more actual drug-disease associations from the top-ranked candidates. Case studies on five drugs further demonstrated the ability of NAPred to identify potential drug-related disease candidates.


Subject(s)
Algorithms , Neural Networks, Computer , Computational Biology/methods , Drug Development/methods , Mental Recall
3.
Am J Cancer Res ; 14(6): 2805-2822, 2024.
Article in English | MEDLINE | ID: mdl-39005660

ABSTRACT

Dysregulation of polyamine metabolism has been associated with the development of many cancers. However, little information has been reported about the associations between elevated extracellular putrescine and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells. In this study, the influence of extracellular putrescine on the malignant behavior and EMT of the AGS and MKN-28 cells was investigated, followed by RNA sequencing profiling of transcriptomic alterations and CUT&Tag sequencing capturing H3K27ac variations across the global genome using extracellular putrescine. Our results demonstrated that the administration of extracellular putrescine significantly promoted the proliferation, migration, invasion, and expression of N-cadherin in GC cells. We also observed elevated H3K27ac in MKN-28 cells but not in AGS cells when extracellular putrescine was used. A combination of transcriptomic alterations and genome-wide variations of H3K27ac highlighted the upregulated MAL2 and H3K27ac in its promoter region. Knockdown and overexpression of MAL2 were found to inhibit and promote EMT, respectively, in AGS and MKN-28 cells. We demonstrated that extracellular putrescine could upregulate MAL2 expression by elevating H3K27ac in its promoter region, thus triggering augmented EMT in GC cells.

4.
Nat Commun ; 15(1): 5606, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961055

ABSTRACT

Viral mutations frequently outpace technologies used to detect harmful variants. Given the continual emergence of SARS-CoV-2 variants, platforms that can identify the presence of a virus and its propensity for infection are needed. Our electronic biomembrane sensing platform recreates distinct SARS-CoV-2 host cell entry pathways and reports the progression of entry as electrical signals. We focus on two necessary entry processes mediated by the viral Spike protein: virus binding and membrane fusion, which can be distinguished electrically. We find that closely related variants of concern exhibit distinct fusion signatures that correlate with trends in cell-based infectivity assays, allowing us to report quantitative differences in their fusion characteristics and hence their infectivity potentials. We use SARS-CoV-2 as our prototype, but we anticipate that this platform can extend to other enveloped viruses and cell lines to quantifiably assess virus entry.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , Membrane Fusion , Cell-Free System , Mutation , Virus Attachment
5.
Int Immunopharmacol ; 132: 111945, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38555816

ABSTRACT

BACKGROUND: Emodin, a natural anthraquinone derivative isolated from the roots of Rheum officinale Baill, has many pharmacological effects including anti-inflammatory, antioxidant, antiviral, antibacterial and anti-cancer. However, little is known about the effect of emodin on acute radiation proctitis (ARP). The present study was conducted to determine its effects and elucidate its mechanisms involving AKT/MAPK/NF-κB/VEGF pathways in ARP mice. METHODS: Total 60 C57BL/6 mice were divided randomly into control group, ARP group, AKT inhibitor MK-2206 group, and different doses of emodin groups. ARP mice were induced by 27 Gy of 6 MV X-ray pelvic local irradiation. MK-2206 was given orally for 2 weeks on alternate days. Emodin was administered daily by oral gavage for 2 weeks. Subsequently, all mice were sacrificed on day 15. The rectal tissues were obtained for further tests. The general signs score and the pathological grade were used to evaluate the severity of ARP. The expression of NF-κB, VEGF and AQP1 were determined by immunohistochemistry and western blot. The expression of p-AKT, p-ERK, p-JNK, p-p38, Bcl-2 and Bax were assessed using western blot. RESULTS: The worse general signs and damaged tissue structure of ARP mice were profoundly ameliorated by emodin. The expression of p-AKT, p-ERK, NF-κB, VEGF and AQP1 were significantly increased, resulting in the inflammation-induced angiogenesis in ARP mice. However, the expression of p-JNK and p-p38 were decreased, leading to the reduction of apoptosis in ARP mice. Excitedly, emodin reversed these changes, not only inhibited inflammation-induced angiogenesis, but also promoted apoptosis. Notably, the effects of emodin were similar to that of AKT inhibitor MK-2206, suggesting the involvement of AKT signaling in the effect of emodin. CONCLUSION: These results suggest that emodin attenuates ARP in mice, and the underlying mechanism might involve inhibition of the AKT/ERK/NF-κB/VEGF pathways and the induction of apoptosis mediated by JNK and p38.


Subject(s)
Emodin , Mice, Inbred C57BL , NF-kappa B , Proctitis , Proto-Oncogene Proteins c-akt , Signal Transduction , Vascular Endothelial Growth Factor A , Animals , Emodin/pharmacology , Emodin/therapeutic use , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proctitis/drug therapy , Proctitis/etiology , Vascular Endothelial Growth Factor A/metabolism , Mice , Signal Transduction/drug effects , Radiation Injuries/drug therapy , Radiation Injuries/pathology , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/metabolism , Rectum/pathology , Rectum/drug effects
6.
Int Immunopharmacol ; 132: 111972, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569429

ABSTRACT

The potential of cytotoxic CD4+ T cells and tissue resident memory T cells (Trm) in achieving adult leukemia remission have been highlighted [1,2]. We hypothesized that CXCR6 could serve as a marker for cytotoxic CD4+ Trm cells in the bone marrow (BM) of pediatric B-ALL patients. Flow cytometry (FCM) and published single cell RNA sequencing (scRNA-seq) datasets were employed to characterize CXCR6+CD4+ T cells in the BM and peripheral blood (PB) of pediatric B-ALL patients and healthy donors. FCM, scRNA-seq and co-culture were utilized to explore the cytotoxicity of CXCR6+CD4+ T cells in vitro based on in vitro induction of CXCR6+CD4+ T cells using tumor antigens and peripheral blood mononuclear cells (PBMCs). The ssGSEA based on the cell markers identified according to the in vivo scRNA-seq data, the TARGET-ALL-P2 datasets, and integrated machine learning algorithm were employed to figure out the key cells with prognostic values, followed by simulation of adoptive cell transfer therapy (ACT). Integrated machine learning identified the high-risk cells for disease free survival, and overall survival, while simulation of ACT therapy using CXCR6+CD4+T cells indicated that CXCR6+CD4+ T cells could remodel the bone marrow microenvironments towards anti-tumor. Based on the expression of genes involved in formation of resident memory T cells, CXCR6 is not a marker of resident memory CD4+T cells but defines therapeutic subtypes of CD4+ cytotoxic T cell lineage for pediatric B-ALL.


Subject(s)
Immunotherapy, Adoptive , Receptors, CXCR6 , Humans , Immunotherapy, Adoptive/methods , Child , Receptors, CXCR6/genetics , Receptors, CXCR6/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , T-Lymphocytes, Cytotoxic/immunology , Male , Child, Preschool , Female , CD4-Positive T-Lymphocytes/immunology , Cell Lineage
7.
J Hazard Mater ; 477: 135236, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39038377

ABSTRACT

Collaborative treatment of pollutants is a promising approach for wastewater treatment. In this work, a covalent organic framework material (COFs) with an imine structure was synthesised by the Schiff base reaction, and photochemical tests showed good photochemical effects. It was used to explore the photocatalytic treatment of co-existing pollutants (heavy metal ions and antibiotics) and the performance of treating co-existing wastewater was investigated. The degradation performance of levofloxacin (LVX) and Cr(VI) was improved in the coexisting pollutants system, with the LVX degradation being 4.2 times more effective than that of the LVX solitary system. Moreover, this phenomenon was also observed in LVX/Ag(I), LVX/Fe(III), sulfadiazine/Cr(VI), norfloxacin/Cr(VI) and tetracycline/Cr(VI) systems. The analysis of active species suggesting that the synergistic promotion of photocatalytic oxidation-reduction systems was not only promoting from the improvement of simple charge separation, but it was also found that high-valent metal species can act directly in the oxidative decomposition of antibiotics. The interaction of pollutants and intermediates were rationally exploited and confirmed by control experiments and theoretical calculation. This conclusion helps us to re-examine the underlying mechanisms of photocatalytic synchronous oxidation and reduction reactions, simultaneously beneficial for the development of mixed pollutant control processes.

8.
Int J Biol Macromol ; 266(Pt 1): 131095, 2024 May.
Article in English | MEDLINE | ID: mdl-38537859

ABSTRACT

Gibberellin oxidases (GAoxs) identified from many species play indispensable roles in GA biosynthesis and GA signal transduction. However, there has been limited research conducted on the GAox family of Salix matsudana, a tetraploid ornamental tree species. Here, 54 GAox genes were identified from S. matsudana and renamed as SmGA20ox1-22, SmGA2ox1-24, SmGA3ox1-6, and SmGAox-like1/2. Gene structure and conserved motif analysis showed that SmGA3ox members possess the 1 intron and other SmGAoxs contain 2-3 introns, and motif 1/2/7 universally present in all SmGAoxs. A total of 69 gene pairs were identified from SmGAox family members, and the Ka/Ks values indicated the SmGAoxs experience the purifying selection. The intra species collinearity analysis implied S. matsudana, S. purpurea, and Populus trichocarpa have the close genetic relationship. The GO analysis suggested SmGAoxs are dominantly involved in GA metabolic process, ion binding, and oxidoreductase activity. RNA-sequencing demonstrated that some SmGAoxs may play an essential role in salt and submergence stresses. In addition, the SmGA20ox13/21 displayed the dominant vitality of GA20 oxidase, but the SmGA20ox13/21 still possessed low activities of GA2 and GA3 oxidases. This study can contribute to reveal the regulatory mechanism of salt and submergence tolerance in willow.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins , Mixed Function Oxygenases , Phylogeny , Salix , Gene Expression Profiling , Gibberellins/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Salix/genetics
9.
Plant Physiol Biochem ; 212: 108738, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761544

ABSTRACT

In the realm of ornamental horticulture, crape myrtle (Lagerstroemia indica) stands out for its aesthetic appeal, attributed largely to its vibrant flowers and distinctive branching architecture. This study embarked on a comprehensive exploration of the gibberellin oxidase (GAox) gene family in crape myrtle, illuminating its pivotal role in regulating GA levels, a key determinant of plant developmental processes. We identified and characterized 36 LiGAox genes, subdivided into GA2ox, GA3ox, GA20ox, and GAox-like subgroups, through genomic analyses. These genes' evolutionary trajectories were delineated, revealing significant gene expansions attributed to segmental duplication events. Functional analyses highlighted the divergent expression patterns of LiGAox genes across different crape myrtle varieties, associating them with variations in flower color and branching architecture. Enzymatic activity assays on selected LiGA2ox enzymes exhibited pronounced GA2 oxidase activity, suggesting a potential regulatory role in GA biosynthesis. Our findings offered a novel insight into the molecular underpinnings of GA-mediated growth and development in L. indica, providing a foundational framework for future genetic enhancements aimed at optimizing ornamental traits.


Subject(s)
Gene Expression Regulation, Plant , Mixed Function Oxygenases , Plant Proteins , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gibberellins/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/anatomy & histology , Flowers/enzymology , Phylogeny
10.
Int Immunopharmacol ; 128: 111544, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38266445

ABSTRACT

The dysregulation of B cell maturation and putrescine metabolism has been implicated in various diseases. However, the causal relationship between them and the underlying mechanisms remain unclear. In this study, we investigated the impact of exogenous putrescine on B cell differentiation in the intestinal microenvironment. Our results demonstrated that administration of exogenous putrescine significantly impaired the proportion of germinal center B (GC B) cells in Peyer's patches (PPs) and lamina propria. Through integration of bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq), we identified putrescine-mediated changes in gene drivers, including those involved in the B cell receptor (BCR) signaling pathway and fatty acid oxidation. Furthermore, putrescine drinking disrupted T-B cell interactions and increased reactive oxygen species (ROS) production in B cells. In vitro activation of B cells confirmed the direct suppression of putrescine on GC B cells differentiation and ROS production. Additionally, we explored the Pearson correlations between putrescine biosynthesis activity and B cell infiltration in pan-cancers, revealing negative correlations in colon adenocarcinoma, stomach adenocarcinoma, and lung adenocarcinoma, but positive correlations in liver hepatocellular carcinoma, and breast invasive carcinoma. Our findings provided novel insights into the suppressive effects of elevated enteric putrescine on intestinal B cells differentiation and highlighted the complex and distinctive immunoregulatory role of putrescine in different microenvironments. These findings expand our understanding of the role of polyamines in B cell immunometabolism and related diseases.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Putrescine/metabolism , Reactive Oxygen Species/metabolism , Adenocarcinoma/metabolism , Peyer's Patches/metabolism , Colonic Neoplasms/metabolism , Germinal Center , Cell Differentiation , Tumor Microenvironment
11.
Article in English | MEDLINE | ID: mdl-37115842

ABSTRACT

Real-time simulation of hyperelastic membranes like cloth still faces a lot of challenges, such as hyperplasticity modeling and contact handling. In this study, we propose projective peridynamics that uses a local-global strategy to enable fast and robust simulation of hyperelastic membranes with contact. In the global step, we propose a semi-implicit strategy to linearize the governing equation for hyperelastic materials that are modeled with peridynamics. By decomposing the first Piola-Kirchhoff stress tensor into a positive and a negative part, successive substitutions can be taken to solve the nonlinear problems. Convergence is guaranteed by further addressing the overshooting problem. Since our global step solve requires no energy summation and dot product operations over the entire problem, it fits into GPU implementation perfectly. In the local step, we further present a GPU-friendly gradient descent method to prevent interpenetration by solving an optimization problem independently. Putting the global and local solves together, experiments show that our method is robust and efficient in simulating complex models of membranes involving hyperelastic materials and contact.

12.
Int J Antimicrob Agents ; 62(4): 106925, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37451649

ABSTRACT

Klebsiella pneumoniae is one of the most common opportunistic pathogens causing hospital- and community-acquired infections. Antibiotic resistance in K. pneumoniae has emerged as a major clinical and public health threat. Persisters are specific antibiotic-tolerant bacterial cells. Studies on the mechanism underlying their formation mechanism and growth status are scarce. Therefore, it is urgent to explore the key genes and signalling pathways involved in the formation and recovery process of K. pneumoniae persisters to enhance the understanding and develop relevant treatment strategies. In this study, we treated K. pneumoniae with a lethal concentration of levofloxacin. It resulted in a distinct plateau of surviving levofloxacin-tolerant persisters. Subsequently, we obtained bacterial samples at five different time points during the formation and recovery of K. pneumoniae persisters to perform transcriptome analysis. ptsH gene was observed to be upregulated during the formation of persisters, and down-regulated during the recovery of the persisters. Further, we used CRISPR-Cas9 to construct ΔptsH, the ptsH-knockout K. pneumoniae strain, and to investigate the effect of ptsH on the persister formation. We observed that ptsH can promote the formation of persisters, reduce accumulation of reactive oxygen species, and enhance antioxidant capacity by reducing cyclic adenosine monophosphate (cAMP) levels. To the best of our knowledge, this is the first study to report that ptsH plays a vital role in forming K. pneumoniae persisters. This study provided important insights to further explore the mechanism underlying the formation of K. pneumoniae persisters and provided a potential target for treating infection with K. pneumoniae persisters.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Levofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Adenosine Monophosphate , Phosphotransferases/pharmacology , Klebsiella Infections/microbiology
13.
Int Immunopharmacol ; 116: 109739, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36706590

ABSTRACT

Dendritic cells (DCs) play pivotal roles in immune responses. The differentiation and function of DCs are regulated by environmental metabolites. Putrescine is ubiquitous in various metabolic microenvironments and its immunoregulation has been of increasing interest. However, the mechanisms associated with its DC-induced immunoregulation remain unclear. In this study, we found putrescine promoted induction of immature bone marrow derived DCs (BMDCs), along with the increased phagocytosis and migration, and altered cytokine secretion in immature BMDCs. Transcriptomic profiles indicated significantly impaired inflammatory-related pathways, elevated oxidative phosphorylation, and decreased p-STAT3 (Tyr705) expression. Additionally, putrescine performed minor influence on the lipopolysaccharide (LPS)-induced maturation of BMDCs but significantly impaired LPS-induced DC-elicited allogeneic T-cell proliferation as well as the cytokine secretion. Furthermore, molecular docking and dynamics on the conjugation between putrescine and STAT3 revealed that putrescine could be stably bound to the hydrophilic cavity in STAT3 and performed significant influence on the Tyr705 phosphorylation. CUT&Tag analysis uncovered altered motifs, downregulated IFN-γ response, and upregulated p53 pathway in Putrescine group compared with Control group. In summary, our results demonstrated for the first time that putrescine might accelerate the differentiation of BMDCs by inhibiting the phosphorylation of STAT3 at Tyr705. Given that both DCs and putrescine have ubiquitous and distinct roles in various immune responses and pathogeneses, our findings may provide more insights into polyamine immunoregulation on DCs, as well as distinct strategies in the clinical utilization of DCs by targeting polyamines.


Subject(s)
Lipopolysaccharides , Putrescine , Phosphorylation , Putrescine/pharmacology , Putrescine/metabolism , Lipopolysaccharides/metabolism , Bone Marrow , Molecular Docking Simulation , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Dendritic Cells , Bone Marrow Cells/metabolism
14.
Front Public Health ; 11: 1160294, 2023.
Article in English | MEDLINE | ID: mdl-37113168

ABSTRACT

Background: Hearing loss has occurred as a critical concern for aging and health. However, it remains unknown whether nocturnal sleep and midday napping duration are associated with hearing loss in middle-aged and older adults. Methods: The study comprised 9,573 adults from China Health and Retirement Longitudinal Study, who have completed the survey for sleep characteristics and subjective functional hearing. We collected self-reported nocturnal sleep duration (<5, 5 to <6, 6 to <7, 7 to <9, ≥9 h/night) and midday napping duration (≤5, 5 to ≤30, and >30 min). The sleep information was classified into different sleep patterns. The primary outcome was self-reported hearing loss events. Multivariate Cox regression models and restricted cubic splines were used to investigate the longitudinal association of sleep characteristics with hearing loss. We applied Cox generalized additive models and bivariate exposure-response surface diagrams to visualize the effects of different sleep patterns on hearing loss. Results: We confirmed 1,073 cases of hearing loss (55.1% female) during the follow-up. After adjusting for demographic characteristics, lifestyle factors and health condition, nocturnal sleep with < 5 h was positively associated with hearing loss [hazard ratio (HR): 1.45, 95% confidence interval [CI]: 1.20, 1.75]. Individuals with napping for 5 to ≤30 min had a 20% (HR: 0.80, 95%CI: 0.63, 1.00) lower risk of hearing loss compared with those with napping ≤ 5 min. Restrictive cubic splines showed the reverse J-shaped association between nocturnal sleep and hearing loss. Moreover, we found significant joint effects of sleeping < 7 h/night and midday napping ≤ 5 min (HR: 1.27, 95% CI: 1.06, 1.52) on hearing loss. Bivariate exposure-response surface diagrams also reflected the finding that short sleep without napping existed the highest risk of hearing loss. Compared with persistently sleeping moderately (7-9 h/night), those who persistently slept < 7 h/night or shifted from < 7 h/night to moderate or > 9 h/night had higher risks of hearing loss. Conclusion: Inadequate nocturnal sleep was associated with an elevated risk of poor subjective hearing in middle-aged and older adults, while moderate napping decreased the risk of hearing loss. Keeping sleep stable within recommendation duration may be a useful strategy for preventing poor hearing loss.


Subject(s)
Sleep Duration , Sleep , Middle Aged , Humans , Female , Aged , Male , Risk Factors , Longitudinal Studies , Cohort Studies , Sleep/physiology , Sleep Deprivation , Hearing , China/epidemiology
15.
ACS Appl Mater Interfaces ; 15(10): 12766-12776, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36866935

ABSTRACT

As the threat of antibiotic resistance increases, there is a particular focus on developing antimicrobials against pathogenic bacteria whose multidrug resistance is especially entrenched and concerning. One such target for novel antimicrobials is the ATP-binding cassette (ABC) transporter MsbA that is present in the plasma membrane of Gram-negative pathogenic bacteria where it is fundamental to the survival of these bacteria. Supported lipid bilayers (SLBs) are useful in monitoring membrane protein structure and function since they can be integrated with a variety of optical, biochemical, and electrochemical techniques. Here, we form SLBs containing Escherichia coli MsbA and use atomic force microscopy (AFM) and structured illumination microscopy (SIM) as high-resolution microscopy techniques to study the integrity of the SLBs and incorporated MsbA proteins. We then integrate these SLBs on microelectrode arrays (MEA) based on the conducting polymer poly(3,4-ethylenedioxy-thiophene) poly(styrene sulfonate) (PEDOT:PSS) using electrochemical impedance spectroscopy (EIS) to monitor ion flow through MsbA proteins in response to ATP hydrolysis. These EIS measurements can be correlated with the biochemical detection of MsbA-ATPase activity. To show the potential of this SLB approach, we observe not only the activity of wild-type MsbA but also the activity of two previously characterized mutants along with quinoline-based MsbA inhibitor G907 to show that EIS systems can detect changes in ABC transporter activity. Our work combines a multitude of techniques to thoroughly investigate MsbA in lipid bilayers as well as the effects of potential inhibitors of this protein. We envisage that this platform will facilitate the development of next-generation antimicrobials that inhibit MsbA or other essential membrane transporters in microorganisms.


Subject(s)
ATP-Binding Cassette Transporters , Biosensing Techniques , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Lipid Bilayers/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Adenosine Triphosphate/metabolism
16.
ACS Biomater Sci Eng ; 9(6): 3632-3642, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37137156

ABSTRACT

The use of bacteriophages, viruses that specifically infect bacteria, as antibiotics has become an area of great interest in recent years as the effectiveness of conventional antibiotics recedes. The detection of phage interactions with specific bacteria in a rapid and quantitative way is key for identifying phages of interest for novel antimicrobials. Outer membrane vesicles (OMVs) derived from Gram-negative bacteria can be used to make supported lipid bilayers (SLBs) and therefore in vitro membrane models that contain naturally occurring components of the bacterial outer membrane. In this study, we employed Escherichia coli OMV derived SLBs and use both fluorescent imaging and mechanical sensing techniques to show their interactions with T4 phage. We also integrate these bilayers with microelectrode arrays (MEAs) functionalized with the conducting polymer PEDOT:PSS and show that the pore forming interactions of the phages with the SLBs can be monitored using electrical impedance spectroscopy. To highlight our ability to detect specific phage interactions, we also generate SLBs using OMVs derived from Citrobacter rodentium, which is resistant to T4 phage infection, and identify their lack of interaction with the phage. The work presented here shows how interactions occurring between the phages and these complex SLB systems can be monitored using a range of experimental techniques. We believe this approach can be used to identify phages that work against bacterial strains of interest, as well as more generally to monitor any pore forming structure (such as defensins) interacting with bacterial outer membranes, and thus aid in the development of next generation antimicrobials.


Subject(s)
Bacteriophages , Lipid Bilayers , Lipid Bilayers/chemistry , Escherichia coli , Anti-Bacterial Agents/pharmacology
17.
Adv Sci (Weinh) ; : e2304301, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039435

ABSTRACT

Drug studies targeting neuronal ion channels are crucial to understand neuronal function and develop therapies for neurological diseases. The traditional method to study neuronal ion-channel activities heavily relies on the whole-cell patch clamp as the industry standard. However, this technique is both technically challenging and labour-intensive, while involving the complexity of keeping cells alive with low throughput. Therefore, the shortcomings are limiting the efficiency of ion-channel-related neuroscience research and drug testing. Here, this work reports a new system of integrating neuron membranes with organic microelectrode arrays (OMEAs) for ion-channel-related drug studies. This work demonstrates that the supported lipid bilayers (SLBs) derived from both neuron-like (neuroblastoma) cells and primary neurons are integrated with OMEAs for the first time. The increased expression of voltage-gated calcium (CaV) ion channels on differentiated SH-SY5Y SLBs  compared to non-differentiated ones is sensed electrically. Also, dose-response of the CaV ion-channel blocking effect on primary cortical neuronal SLBs from rats is monitored. The dose range causing ion channel blocking is comparable to literature. This system overcomes the major challenges from traditional methods (e.g., patch clamp) and showcases an easy-to-test, rapid, ultra-sensitive, cell-free, and high-throughput platform to monitor dose-dependent ion-channel blocking effects on native neuronal membranes.

18.
Mater Horiz ; 10(9): 3589-3600, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37318042

ABSTRACT

Three-dimensional in vitro stem cell models have enabled a fundamental understanding of cues that direct stem cell fate. While sophisticated 3D tissues can be generated, technology that can accurately monitor these complex models in a high-throughput and non-invasive manner is not well adapted. Here we show the development of 3D bioelectronic devices based on the electroactive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)-(PEDOT:PSS) and their use for non-invasive, electrical monitoring of stem cell growth. We show that the electrical, mechanical and wetting properties as well as the pore size/architecture of 3D PEDOT:PSS scaffolds can be fine-tuned simply by changing the processing crosslinker additive. We present a comprehensive characterization of both 2D PEDOT:PSS thin films of controlled thicknesses, and 3D porous PEDOT:PSS structures made by the freeze-drying technique. By slicing the bulky scaffolds we generate homogeneous, porous 250 µm thick PEDOT:PSS slices, constituting biocompatible 3D constructs able to support stem cell cultures. These multifunctional slices are attached on indium-tin oxide substrates (ITO) with the help of an electrically active adhesion layer, enabling 3D bioelectronic devices with a characteristic and reproducible, frequency dependent impedance response. This response changes drastically when human adipose derived stem cells (hADSCs) grow within the porous PEDOT:PSS network as revealed by fluorescence microscopy. The increase of cell population within the PEDOT:PSS porous network impedes the charge flow at the interface between PEDOT:PSS and ITO, enabling the interface resistance (R1) to be used as a figure of merit to monitor the proliferation of stem cells. The non-invasive monitoring of stem cell growth allows for the subsequent differentiation 3D stem cell cultures into neuron like cells, as verified by immunofluorescence and RT-qPCR measurements. The strategy of controlling important properties of 3D PEDOT:PSS structures simply by altering processing parameters can be applied for development of a number of stem cell in vitro models as well as stem cell differentiation pathways. We believe the results presented here will advance 3D bioelectronic technology for both fundamental understanding of in vitro stem cell cultures as well as the development of personalized therapies.


Subject(s)
Adult Stem Cells , Electricity , Humans , Neurons , Cell Differentiation , Electric Impedance
19.
Adv Healthc Mater ; 12(27): e2301194, 2023 10.
Article in English | MEDLINE | ID: mdl-37171457

ABSTRACT

Tumor-derived extracellular vesicles (TEVs) induce the epithelial-to-mesenchymal transition (EMT) in nonmalignant cells to promote invasion and cancer metastasis, representing a novel therapeutic target in a field severely lacking in efficacious antimetastasis treatments. However, scalable technologies that allow continuous, multiparametric monitoring for identifying metastasis inhibitors are absent. Here, the development of a functional phenotypic screening platform based on organic electrochemical transistors (OECTs) for real-time, noninvasive monitoring of TEV-induced EMT and screening of antimetastatic drugs is reported. TEVs derived from the triple-negative breast cancer cell line MDA-MB-231 induce EMT in nonmalignant breast epithelial cells (MCF10A) over a nine-day period, recapitulating a model of invasive ductal carcinoma metastasis. Immunoblot analysis and immunofluorescence imaging confirm the EMT status of TEV-treated cells, while dual optical and electrical readouts of cell phenotype are obtained using OECTs. Further, heparin, a competitive inhibitor of cell surface receptors, is identified as an effective blocker of TEV-induced EMT. Together, these results demonstrate the utility of the platform for TEV-targeted drug discovery, allowing for facile modeling of the transient drug response using electrical measurements, and provide proof of concept that inhibitors of TEV function have potential as antimetastatic drug candidates.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Early Detection of Cancer , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Cell Movement , Melanoma, Cutaneous Malignant
20.
ACS Synth Biol ; 11(12): 3921-3928, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36473701

ABSTRACT

Modeling in systems and synthetic biology relies on accurate parameter estimates and predictions. Accurate model calibration relies, in turn, on data and on how well suited the available data are to a particular modeling task. Optimal experimental design (OED) techniques can be used to identify experiments and data collection procedures that will most efficiently contribute to a given modeling objective. However, implementation of OED is limited by currently available software tools that are not well suited for the diversity of nonlinear models and non-normal data commonly encountered in biological research. Moreover, existing OED tools do not make use of the state-of-the-art numerical tools, resulting in inefficient computation. Here, we present the NLoed software package and demonstrate its use with in vivo data from an optogenetic system in Escherichia coli. NLoed is an open-source Python library providing convenient access to OED methods, with particular emphasis on experimental design for systems biology research. NLoed supports a wide variety of nonlinear, multi-input/output, and dynamic models and facilitates modeling and design of experiments over a wide variety of data types. To support OED investigations, the NLoed package implements maximum likelihood fitting and diagnostic tools, providing a comprehensive modeling workflow. NLoed offers an accessible, modular, and flexible OED tool set suited to the wide variety of experimental scenarios encountered in systems biology research. We demonstrate NLoed's capabilities by applying it to experimental design for characterization of a bacterial optogenetic system.


Subject(s)
Research Design , Systems Biology , Systems Biology/methods , Models, Biological , Software , Synthetic Biology , Escherichia coli/genetics
SELECTION OF CITATIONS
SEARCH DETAIL