Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
FASEB J ; 38(5): e23511, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38421303

ABSTRACT

KDM4C is implicated in the regulation of cell proliferation, differentiation, and maintenance in various stem cell types. However, its function in neural stem cells (NSCs) remains poorly understood. Therefore, this study aims to investigate the role and regulatory mechanism of KDM4C in NSCs. Primary hippocampal NSCs were isolated from neonatal mice, and both in vivo and in vitro lentivirus-mediated overexpression of KDM4C were induced in these hippocampal NSCs. Staining results revealed a significant increase in BrdU- and Ki-67-positive cells, along with an elevated number of cells in S phases due to KDM4C overexpression. Subsequently, RNA-seq was employed to analyze gene expression changes following KDM4C upregulation. GO enrichment analysis, KEGG analysis, and GSEA highlighted KDM4C-regulated genes associated with development, cell cycle, and neurogenesis. Protein-protein interaction analysis uncovered that ApoE protein interacts with several genes (top 10 upregulated and downregulated) regulated by KDM4C. Notably, knocking down ApoE mitigated the proliferative effect induced by KDM4C overexpression in NSCs. Our study demonstrates that KDM4C overexpression significantly upregulates ApoE expression, ultimately promoting proliferation in mouse hippocampal NSCs. These findings provide valuable insights into the molecular mechanisms governing neurodevelopment, with potential implications for therapeutic strategies in neurological disorders.


Subject(s)
Apolipoproteins E , Neural Stem Cells , Animals , Mice , Cell Cycle , Cell Proliferation , Hippocampus
2.
J Cell Physiol ; 239(4): e31178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38214211

ABSTRACT

Glioblastoma stem cells (GSCs) exert a crucial influence on glioblastoma (GBM) development, progression, resistance to therapy, and recurrence, making them an attractive target for drug discovery. UTX, a histone H3K27 demethylase, participates in regulating multiple cancer types. However, its functional role in GSCs remains insufficiently explored. This study aims to investigate the role and regulatory mechanism of UTX on GSCs. Analysis of TCGA data revealed heightened UTX expression in glioma, inversely correlating with overall survival. Inhibiting UTX suppressed GBM cell growth and induced apoptosis. Subsequently, we cultured primary GSCs from three patients, observing that UTX inhibition suppressed cell proliferation and induced apoptosis. RNA-seq was performed to analyze the gene expression changes after silencing UTX in GSCs. The results indicated that UTX-mediated genes were strongly correlated with GBM progression and regulatory tumor microenvironment. The transwell co-cultured experiment showed that silencing UTX in the transwell chamber GSCs inhibited the well plate cell proliferation. Protein-protein interaction analysis revealed that periostin (POSTN) played a role in the UTX-mediated transcriptional regulatory network. Replenishing POSTN reversed the effects of UTX inhibition on GSC proliferation and apoptosis. Our study demonstrated that UTX inhibition hindered POSTN expression by enhancing the H3K27me2/3 level, eventually resulting in inhibiting proliferation and promoting apoptosis of patient-derived GSCs. Our findings may provide a novel and effective strategy for the treatment of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Histone Demethylases , Neoplastic Stem Cells , Humans , Apoptosis/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Periostin , Tumor Microenvironment , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism
3.
Mol Nutr Food Res ; 68(5): e2300355, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38327171

ABSTRACT

SCOPE: Disturbances in one-carbon metabolism contribute to nonalcoholic fatty liver disease (NAFLD) which encompasses steatosis, steatohepatitis, fibrosis, and cirrhosis. The goal is to examine impact of folate deficiency and the Mthfr677C >T variant on NAFLD. METHODS AND RESULTS: This study uses the new Mthfr677C >T mouse model for the human MTHFR677C >T variant. Mthfr677CC and Mthfr677TT mice were fed control diet (CD) or folate-deficient (FD) diets for 4 months. FD and Mthfr677TT alter choline/methyl metabolites in liver and/or plasma (decreased S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio, methyltetrahydrofolate, and betaine; increased homocysteine [Hcy]). FD, with contribution from Mthfr677TT, provokes fibrosis in males. Studies of normal livers reveal alterations in plasma markers and gene expression that suggest an underlying predisposition to fibrosis induced by FD and/or Mthfr677TT in males. These changes are absent or reverse in females, consistent with the sex disparity of fibrosis. Sex-based differences in methylation potential, betaine, sphingomyelin, and trimethylamine-N-oxide (TMAO) levels may prevent fibrogenesis in females. In contrast, Mthfr677TT alters choline metabolism, dysregulates expression of lipid metabolism genes, and promotes steatosis in females. CONCLUSION: This study suggests that folate deficiency predisposes males to fibrosis, which is exacerbated by Mthfr677TT, whereas Mthfr677TT predisposes females to steatosis, and reveal novel contributory mechanisms for these NAFLD-related disorders.


Subject(s)
Folic Acid Deficiency , Methylenetetrahydrofolate Reductase (NADPH2) , Non-alcoholic Fatty Liver Disease , Animals , Female , Humans , Male , Mice , Betaine , Choline/metabolism , Folic Acid , Folic Acid Deficiency/metabolism , Genotype , Homocysteine , Liver Cirrhosis/etiology , Non-alcoholic Fatty Liver Disease/etiology , S-Adenosylmethionine
4.
Neural Regen Res ; 20(3): 900-912, 2025 Mar 01.
Article in English | MEDLINE | ID: mdl-38886961

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202503000-00033/figure1/v/2024-06-17T092413Z/r/image-tiff The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures. However, the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies. Thus, we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina. In this study, we showed that postnatal retinal explants undergo normal development, and exhibit a consistent structure and timeline with retinas in vivo. Initially, we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells. We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin, respectively. Ki-67- and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis, and exhibited a high degree of similarity in abundance and distribution between groups. Additionally, we used Ceh-10 homeodomain-containing homolog, glutamate-ammonia ligase (glutamine synthetase), neuronal nuclei, and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells, Müller glia, mature neurons, and microglia, respectively. The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas. Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development. The findings confirm the accuracy and credibility of this model and support its use for long-term, systematic, and continuous observation.

SELECTION OF CITATIONS
SEARCH DETAIL