Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34233163

ABSTRACT

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Subject(s)
Microphthalmia-Associated Transcription Factor/metabolism , NADP Transhydrogenases/metabolism , Skin Pigmentation/radiation effects , Ultraviolet Rays , Animals , Cell Line , Cohort Studies , Cyclic AMP/metabolism , DNA Damage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Genetic Predisposition to Disease , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Melanosomes/drug effects , Melanosomes/metabolism , Melanosomes/radiation effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , NADP Transhydrogenases/antagonists & inhibitors , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Polymorphism, Single Nucleotide/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Proteolysis/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Skin Pigmentation/drug effects , Skin Pigmentation/genetics , Ubiquitin/metabolism , Zebrafish
2.
EMBO J ; 43(3): 391-413, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225406

ABSTRACT

Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria, while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and show a compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.


Subject(s)
Fibroblasts , Mitochondrial Membranes , Animals , Mice , Fibroblasts/metabolism , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism
3.
bioRxiv ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-36711707

ABSTRACT

Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.

4.
Front Mol Biosci ; 8: 769135, 2021.
Article in English | MEDLINE | ID: mdl-35004847

ABSTRACT

Cardiolipin is a tetra-acylated di-phosphatidylglycerol lipid enriched in the matrix-facing (inner) leaflet of the mitochondrial inner membrane. Cardiolipin plays an important role in regulating mitochondria function and dynamics. Yet, the mechanisms connecting cardiolipin distribution and mitochondrial protein function remain indirect. In our previous work, we established an in vitro system reconstituting mitochondrial inner membrane fusion mediated by Opa1. We found that the long form of Opa1 (l-Opa1) works together with the proteolytically processed short form (s-Opa1) to mediate fast and efficient membrane fusion. Here, we extend our reconstitution system to generate supported lipid bilayers with asymmetric cardiolipin distribution. Using this system, we find the presence of cardiolipin on the inter-membrane space-facing (outer) leaflet is important for membrane tethering and fusion. We discuss how the presence of cardiolipin in this leaflet may influence protein and membrane properties, and future applications for this approach.

SELECTION OF CITATIONS
SEARCH DETAIL