Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Antimicrob Agents Chemother ; : e0018124, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742896

ABSTRACT

Ivermectin (IVM) could be used for malaria control as treated individuals are lethal to blood-feeding Anopheles, resulting in reduced transmission. Tafenoquine (TQ) is used to clear the liver reservoir of Plasmodium vivax and as a prophylactic treatment in high-risk populations. It has been suggested to use ivermectin and tafenoquine in combination, but the safety of these drugs in combination has not been evaluated. Early derivatives of 8-aminoquinolones (8-AQ) were neurotoxic, and ivermectin is an inhibitor of the P-glycoprotein (P-gp) blood brain barrier (BBB) transporter. Thus, there is concern that co-administration of these drugs could be neurotoxic. This study aimed to evaluate the safety and pharmacokinetic interaction of tafenoquine, ivermectin, and chloroquine (CQ) in Rhesus macaques. No clinical, biochemistry, or hematological outcomes of concern were observed. The Cambridge Neuropsychological Test Automated Battery (CANTAB) was employed to assess potential neurological deficits following drug administration. Some impairment was observed with tafenoquine alone and in the same monkeys with subsequent co-administrations. Co-administration of chloroquine and tafenoquine resulted in increased plasma exposure to tafenoquine. Urine concentrations of the 5,6 orthoquinone TQ metabolite were increased with co-administration of tafenoquine and ivermectin. There was an increase in ivermectin plasma exposure when co-administered with chloroquine. No interaction of tafenoquine on ivermectin was observed in vitro. Chloroquine and trace levels of ivermectin, but not tafenoquine, were observed in the cerebrospinal fluid. The 3''-O-demethyl ivermectin metabolite was observed in macaque plasma but not in urine or cerebrospinal fluid. Overall, the combination of ivermectin, tafenoquine, and chloroquine did not have clinical, neurological, or pharmacological interactions of concern in macaques; therefore, this combination could be considered for evaluation in human trials.

2.
J Neuroinflammation ; 19(1): 40, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35130924

ABSTRACT

BACKGROUND: Zika virus (ZIKV) is a mosquito-transmitted flavivirus that affects many regions of the world. Infection, in utero, causes microcephaly and later developmental and neurologic impairments. The impact of ZIKV infection on neurocognition in adults has not been well described. The objective of the study was to assess the neurocognitive impact of ZIKV infection in adult rhesus macaques. METHODS: Neurocognitive assessments were performed using the Cambridge Neuropsychological Test Automated Battery (CANTAB) via a touch screen and modified Brinkman Board before and after subcutaneous ZIKV inoculation. Immune activation markers were measured in the blood and cerebral spinal fluid (CSF) by multiplex assay and flow cytometry. RESULTS: All animals (N = 8) had detectable ZIKV RNA in plasma at day 1 post-inoculation (PI) that peaked at day 2 PI (median 5.9, IQR 5.6-6.2 log10 genome equivalents/mL). In all eight animals, ZIKV RNA became undetectable in plasma by day 14 PI, but persisted in lymphoid tissues. ZIKV RNA was not detected in the CSF supernatant at days 4, 8, 14 and 28 PI but was detected in the brain of 2 animals at days 8 and 28 PI. Elevations in markers of immune activation in the blood and CSF were accompanied by a reduction in accuracy and reaction speed on the CANTAB in the majority of animals. CONCLUSIONS: The co-occurrence of systemic and CSF immune perturbations and neurocognitive impairment establishes this model as useful for studying the impact of neuroinflammation on neurobehavior in rhesus macaques, as it pertains to ZIKV infection and potentially other pathogens.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Animals , Flow Cytometry , Macaca mulatta , Zika Virus Infection/complications
3.
Reprod Domest Anim ; 57(7): 802-805, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35318724

ABSTRACT

Equex STM paste, a water-soluble detergent, exerts the protective effect of egg-yolk during sperm cryopreservation. This study aims to evaluate the post-thaw quality of rhesus monkeys' epididymal spermatozoa in the Tris-citric-glucose egg-yolk extender, supplemented with or without Equex STM paste (0.5%, v/v) (n = 6). Sperm motility, progressive motility, motion characteristics, viability, acrosome integrity and mitochondrial activity were compared immediately post-thaw. Equex STM paste supplementation significantly improved sperm motility (35.0 ± 4.5 vs. 23.7 ± 5.0%), progressive motility (15.4 ± 2.1 vs. 9.8 ± 2.7%) and percentage of sperm with intact acrosome (30.4 ± 4.5 vs. 26.3 ± 4.6%) compared to the controls, respectively. This is the first report applying Equex STM paste for monkey epididymal sperm cryopreservation and is expected to be beneficial as a model for endangered non-human primates.


Subject(s)
Semen Preservation , Sperm Motility , Acrosome , Animals , Cryopreservation/veterinary , Cryoprotective Agents/pharmacology , Macaca mulatta , Male , Semen , Semen Preservation/veterinary , Spermatozoa
4.
J Infect Dis ; 224(4): 632-642, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33367826

ABSTRACT

BACKGROUND: Ebola virus disease (EVD) supportive care strategies are largely guided by retrospective observational research. This study investigated the effect of EVD supportive care algorithms on duration of survival in a controlled nonhuman primate (NHP) model. METHODS: Fourteen rhesus macaques were challenged intramuscularly with a target dose of Ebola virus (1000 plaque-forming units; Kikwit). NHPs were allocated to intensive care unit (ICU)-like algorithms (n = 7), intravenous fluids plus levofloxacin (n = 2), or a control group (n = 5). The primary outcome measure was duration of survival, and secondary outcomes included changes in clinical laboratory values. RESULTS: Duration of survival was not significantly different between the pooled ICU-like algorithm and control groups (8.2 vs 6.9 days of survival; hazard ratio; 0.50; P = .25). Norepinephrine was effective in transiently maintaining baseline blood pressure. NHPs treated with ICU-like algorithms had delayed onset of liver and kidney injury. CONCLUSIONS: While an obvious survival difference was not observed with ICU-like care, clinical observations from this model may aid in EVD supportive care NHP model refinement.


Subject(s)
Critical Care , Hemorrhagic Fever, Ebola , Intensive Care Units , Animals , Disease Models, Animal , Ebolavirus , Hemorrhagic Fever, Ebola/therapy , Macaca mulatta , Primates , Retrospective Studies
5.
Article in English | MEDLINE | ID: mdl-32660993

ABSTRACT

Previously, ivermectin (1 to 10 mg/kg of body weight) was shown to inhibit the liver-stage development of Plasmodium berghei in orally dosed mice. Here, ivermectin showed inhibition of the in vitro development of Plasmodium cynomolgi schizonts (50% inhibitory concentration [IC50], 10.42 µM) and hypnozoites (IC50, 29.24 µM) in primary macaque hepatocytes when administered as a high dose prophylactically but not when administered in radical cure mode. The safety, pharmacokinetics, and efficacy of oral ivermectin (0.3, 0.6, and 1.2 mg/kg) with and without chloroquine (10 mg/kg) administered for 7 consecutive days were evaluated for prophylaxis or radical cure of P. cynomolgi liver stages in rhesus macaques. No inhibition or delay to blood-stage P. cynomolgi parasitemia was observed at any ivermectin dose (0.3, 0.6, and 1.2 mg/kg). Ivermectin (0.6 and 1.2 mg/kg) and chloroquine (10 mg/kg) in combination were well-tolerated with no adverse events and no significant pharmacokinetic drug-drug interactions observed. Repeated daily ivermectin administration for 7 days did not inhibit ivermectin bioavailability. It was recently demonstrated that both ivermectin and chloroquine inhibit replication of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro Further ivermectin and chloroquine trials in humans are warranted to evaluate their role in Plasmodium vivax control and as adjunctive therapies against COVID-19 infections.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Ivermectin/pharmacology , Liver/drug effects , Malaria/drug therapy , Plasmodium cynomolgi/drug effects , Animals , Antimalarials/blood , Antimalarials/pharmacokinetics , Biological Availability , Chloroquine/blood , Chloroquine/pharmacokinetics , Drug Administration Schedule , Drug Combinations , Drug Synergism , Female , Hepatocytes/drug effects , Hepatocytes/parasitology , Ivermectin/blood , Ivermectin/pharmacokinetics , Liver/parasitology , Macaca mulatta , Malaria/parasitology , Male , Parasitemia/drug therapy , Plasmodium cynomolgi/growth & development , Plasmodium cynomolgi/pathogenicity , Primary Cell Culture , Schizonts/drug effects , Schizonts/growth & development
6.
Emerg Infect Dis ; 23(8): 1274-1281, 2017 08.
Article in English | MEDLINE | ID: mdl-28548637

ABSTRACT

Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present.


Subject(s)
Macaca fascicularis , Macaca mulatta , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Female , Male , Vagina , Virus Replication , Virus Shedding , Zika Virus Infection/transmission
7.
J Infect Dis ; 213(1): 57-60, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26153408

ABSTRACT

A 3.5-year-old adult female rhesus macaque (Macaca mulatta) manifested swelling of the left upper eyelid and conjunctiva and a decline in clinical condition 18 days following intramuscular challenge with Ebola virus (EBOV; Kikwit-1995), after apparent clinical recovery. Histologic lesions with strong EBOV antigen staining were noted in the left eye (scleritis, conjunctivitis, and peri-optic neuritis), brain (choriomeningoencephalitis), stomach, proximal duodenum, and pancreas. Spleen, liver, and adrenal glands, common targets for acute infection, appeared histologically normal with no evidence of EBOV immunoreactivity. These findings may provide important insight for understanding sequelae seen in West African survivors of Ebola virus disease.


Subject(s)
Brain/pathology , Central Nervous System Viral Diseases/pathology , Conjunctivitis/pathology , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/pathology , Scleritis/pathology , Animals , Brain/virology , Central Nervous System Viral Diseases/etiology , Central Nervous System Viral Diseases/virology , Conjunctivitis/etiology , Conjunctivitis/virology , Disease Models, Animal , Female , Hemorrhagic Fever, Ebola/complications , Hemorrhagic Fever, Ebola/physiopathology , Macaca mulatta , Necrosis , Scleritis/etiology , Scleritis/virology
8.
Infect Immun ; 82(5): 2027-36, 2014 May.
Article in English | MEDLINE | ID: mdl-24595138

ABSTRACT

Several animal models exist to evaluate the immunogenicity and protective efficacy of candidate Shigella vaccines. The two most widely used nonprimate models for vaccine development include a murine pulmonary challenge model and a guinea pig keratoconjunctivitis model. Nonhuman primate models exhibit clinical features and gross and microscopic colonic lesions that mimic those induced in human shigellosis. Challenge models for enterotoxigenic Escherichia coli (ETEC) and Campylobacter spp. have been successfully developed with Aotus nancymaae, and the addition of a Shigella-Aotus challenge model would facilitate the testing of combination vaccines. A series of experiments were designed to identify the dose of Shigella flexneri 2a strain 2457T that induces an attack rate of 75% in the Aotus monkey. After primary challenge, the dose required to induce an attack rate of 75% was calculated to be 1 × 10(11) CFU. Shigella-specific immune responses were low after primary challenge and subsequently boosted upon rechallenge. However, preexisting immunity derived from the primary challenge was insufficient to protect against the homologous Shigella serotype. A successive study in A. nancymaae evaluated the ability of multiple oral immunizations with live-attenuated Shigella vaccine strain SC602 to protect against challenge. After three oral immunizations, animals were challenged with S. flexneri 2a 2457T. A 70% attack rate was demonstrated in control animals, whereas animals immunized with vaccine strain SC602 were protected from challenge (efficacy of 80%; P = 0.05). The overall study results indicate that the Shigella-Aotus nancymaae challenge model may be a valuable tool for evaluating vaccine efficacy and investigating immune correlates of protection.


Subject(s)
Aotidae , Dysentery, Bacillary/prevention & control , Shigella Vaccines/immunology , Administration, Oral , Animals , Antibodies, Bacterial/blood , Diarrhea/microbiology , Diarrhea/prevention & control , Disease Models, Animal , Immunoglobulin A/blood , Immunoglobulin G/blood , Shigella Vaccines/administration & dosage , Shigella Vaccines/adverse effects
9.
Sci Rep ; 14(1): 13315, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858439

ABSTRACT

Exposure to high, marginally lethal doses or higher of ionizing radiation, either intentional or accidental, results in injury to various organs. Currently, there is only a limited number of safe and effective radiation countermeasures approved by US Food and Drug Administration for such injuries. These approved agents are effective for only the hematopoietic component of the acute radiation syndrome and must be administered only after the exposure event: currently, there is no FDA-approved agent that can be used prophylactically. The nutraceutical, gamma-tocotrienol (GT3) has been found to be a promising radioprotector of such exposure-related injuries, especially those of a hematopoietic nature, when tested in either rodents or nonhuman primates. We investigated the nature of injuries and the possible protective effects of GT3 within select organ systems/tissues caused by both non-lethal level (4.0 Gy), as well as potentially lethal level (5.8 Gy) of ionizing radiation, delivered as total-body or partial-body exposure. Results indicated that the most severe, dose-dependent injuries occurred within those organ systems with strong self-renewing capacities (e.g., the lymphohematopoietic and gastrointestinal systems), while in other tissues (e.g., liver, kidney, lung) endowed with less self-renewal, the pathologies noted tended to be less pronounced and less dependent on the level of exposure dose or on the applied exposure regimen. The prophylactic use of the test nutraceutical, GT3, appeared to limit the extent of irradiation-associated pathology within blood forming tissues and, to some extent, within the small intestine of the gastrointestinal tract. No distinct, global pattern of bodily protection was noted with the agent's use, although a hint of a possible radioprotective benefit was suggested not only by a lessening of apparent injury within select organ systems, but also by way of noting the lack of early onset of moribundity within select GT3-treated animals.


Subject(s)
Dietary Supplements , Radiation-Protective Agents , Animals , Radiation-Protective Agents/pharmacology , Vitamin E/pharmacology , Vitamin E/analogs & derivatives , Acute Radiation Syndrome/prevention & control , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/pathology , Chromans/pharmacology , Male , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Macaca mulatta , Liver/drug effects , Liver/radiation effects , Liver/pathology
10.
Brain Behav Immun Health ; 33: 100683, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37701789

ABSTRACT

Sleep deprivation in humans is associated with both cognitive impairment and immune dysregulation. An animal model of neuropathogenesis may provide insight to understand the effects of sleep deprivation on the brain. Human neurocognition is more closely mirrored by nonhuman primates (NHP) than other animals. As such, we developed an NHP model to assess the impact of sleep deprivation on neurocognition and markers of systemic immune activation. Six male rhesus macaques underwent three rounds of sleep deprivation (48 h without sleep) at days 0, 14, and 28. We performed domain specific cognitive assessments using the Cambridge Neuropsychological Test Automated Battery (CANTAB) via a touch screen before and after 24 and 48 h of sleep deprivation. Immune activation markers were measured in the blood by multiplex assay and flow cytometry. Although we observed variability in cognitive performance between the three rounds of sleep deprivation, cognitive impairments were identified in all six animals. We noted more cognitive impairments after 48 h than after 24 h of sleep deprivation. Following 48 h of sleep deprivation, elevations in markers of immune activation in the blood were observed in most animals. The observed impairments largely normalized after sleep. The co-occurrence of systemic immune alterations and cognitive impairment establishes this model as useful for studying the impact of sleep deprivation on neurobehavior and immune perturbations in rhesus macaques.

11.
Mil Med ; 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35134989

ABSTRACT

INTRODUCTION: We established a murine wound infection model with doxycycline treatment against multidrug-resistant Acinetobacter baumannii (AB5075) in Institute of Cancer Research (ICR) outbred mice. METHODS: Using three groups of neutropenic ICR mice, two full-thickness dorsal dermal wounds (6 mm diameter) were made on each mouse. In two groups, wounds were inoculated with 7.0 × 104 colony-forming units of AB5075. Of these two groups, one received a 6-day regimen of doxycycline while the other was sham treated with phosphate-buffered saline as placebo control. Another uninfected/untreated group served as a control. Wound closure, clinical symptoms, bacterial burden in wound beds and organs, and wound histology were investigated. RESULTS: Doxycycline-treated wounds completely healed by day 21, but untreated, infected wounds failed to heal. Compared to controls, wound infections without treatment resulted in significant reductions in body weight and higher bacterial loads in wound beds, lung, liver, and spleen by day 7. Histological evaluation of wounds on day 21 revealed ulcerated epidermis, muscle necrosis, and bacterial presence in untreated wounds, while wounds treated with doxycycline presented intact epidermis. CONCLUSIONS: Compared to the previously developed BALB/c dermal wound model, this study demonstrates that the mouse strain selected impacts wound severity and resolution. Furthermore, this mouse model accommodates two dorsal wounds rather than only one. These variations offer investigators increased versatility when designing future studies of wound infection. In conclusion, ICR mice are a viable option as a model of dermal wound infection. They accommodate two simultaneous dorsal wounds, and upon infection, these wounds follow a different pattern of resolution compared to BALB/c mice.

12.
Vaccines (Basel) ; 10(5)2022 May 16.
Article in English | MEDLINE | ID: mdl-35632541

ABSTRACT

Virus-like particles (VLPs) are highly immunogenic and versatile subunit vaccines composed of multimeric viral proteins that mimic the whole virus but lack genetic material. Due to the lack of infectivity, VLPs are being developed as safe and effective vaccines against various infectious diseases. In this study, we generated a chimeric VLP-based COVID-19 vaccine stably produced by HEK293T cells. The chimeric VLPs contain the influenza virus A matrix (M1) proteins and the SARS-CoV-2 Wuhan strain spike (S) proteins with a deletion of the polybasic furin cleavage motif and a replacement of the transmembrane and cytoplasmic tail with that of the influenza virus hemagglutinin (HA). These resulting chimeric S-M1 VLPs, displaying S and M1, were observed to be enveloped particles that are heterogeneous in shape and size. The intramuscular vaccination of BALB/c mice in a prime-boost regimen elicited high titers of S-specific IgG and neutralizing antibodies. After immunization and a challenge with SARS-CoV-2 in K18-hACE2 mice, the S-M1 VLP vaccination resulted in a drastic reduction in viremia, as well as a decreased viral load in the lungs and improved survival rates compared to the control mice. Balanced Th1 and Th2 responses of activated S-specific T-cells were observed. Moderate degrees of inflammation and viral RNA in the lungs and brains were observed in the vaccinated group; however, brain lesion scores were less than in the PBS control. Overall, we demonstrate the immunogenicity of a chimeric VLP-based COVID-19 vaccine which confers strong protection against SARS-CoV-2 viremia in mice.

13.
PLoS Negl Trop Dis ; 14(6): e0008107, 2020 06.
Article in English | MEDLINE | ID: mdl-32569276

ABSTRACT

Mosquito-borne and sexual transmission of Zika virus (ZIKV), a TORCH pathogen, recently initiated a series of large epidemics throughout the Tropics. Animal models are necessary to determine transmission risk and study pathogenesis, as well screen antivirals and vaccine candidates. In this study, we modeled mosquito and sexual transmission of ZIKV in the African green monkey (AGM). Following subcutaneous, intravaginal or intrarectal inoculation of AGMs with ZIKV, we determined the transmission potential and infection dynamics of the virus. AGMs inoculated by all three transmission routes exhibited viremia and viral shedding followed by strong virus neutralizing antibody responses, in the absence of clinical illness. All four of the subcutaneously inoculated AGMs became infected (mean peak viremia: 2.9 log10 PFU/mL, mean duration: 4.3 days) and vRNA was detected in their oral swabs, with infectious virus being detected in a subset of these specimens. Although all four of the intravaginally inoculated AGMs developed virus neutralizing antibody responses, only three had detectable viremia (mean peak viremia: 4.0 log10 PFU/mL, mean duration: 3.0 days). These three AGMs also had vRNA and infectious virus detected in both oral and vaginal swabs. Two of the four intrarectally inoculated AGMs became infected (mean peak viremia: 3.8 log10 PFU/mL, mean duration: 3.5 days). vRNA was detected in oral swabs collected from both of these infected AGMs, and infectious virus was detected in an oral swab from one of these AGMs. Notably, vRNA and infectious virus were detected in vaginal swabs collected from the infected female AGM (peak viral load: 7.5 log10 copies/mL, peak titer: 3.8 log10 PFU/mL, range of detection: 5-21 days post infection). Abnormal clinical chemistry and hematology results were detected and acute lymphadenopathy was observed in some AGMs. Infection dynamics in all three AGM ZIKV models are similar to those reported in the majority of human ZIKV infections. Our results indicate that the AGM can be used as a surrogate to model mosquito or sexual ZIKV transmission and infection. Furthermore, our results suggest that AGMs are likely involved in the enzootic maintenance and amplification cycle of ZIKV.


Subject(s)
Disease Models, Animal , Disease Transmission, Infectious , Sexually Transmitted Diseases, Viral/transmission , Vector Borne Diseases/transmission , Zika Virus Infection/transmission , Animals , Chlorocebus aethiops , Culicidae , Female , Male
14.
PLoS One ; 13(10): e0199339, 2018.
Article in English | MEDLINE | ID: mdl-30339670

ABSTRACT

Laboratory animals are commonly anesthetized to prevent pain and distress and to provide safe handling. Anesthesia procedures are well-developed for common laboratory mammals, but not as well established in reptiles. We assessed the performance of intramuscularly injected tiletamine (dissociative anesthetic) and zolazepam (benzodiazepine sedative) in fixed combination (2 mg/kg and 3 mg/kg) in comparison to 2 mg/kg of midazolam (benzodiazepine sedative) in ball pythons (Python regius). We measured heart and respiratory rates and quantified induction parameters (i.e., time to loss of righting reflex, time to loss of withdrawal reflex) and recovery parameters (i.e., time to regain righting reflex, withdrawal reflex, normal behavior). Mild decreases in heart and respiratory rates (median decrease of <10 beats per minute and <5 breaths per minute) were observed for most time points among all three anesthetic dose groups. No statistically significant difference between the median time to loss of righting reflex was observed among animals of any group (p = 0.783). However, the withdrawal reflex was lost in all snakes receiving 3mg/kg of tiletamine+zolazepam but not in all animals of the other two groups (p = 0.0004). In addition, the time for animals to regain the righting reflex and resume normal behavior was longer in the drug combination dose groups compared to the midazolam group (p = 0.0055). Our results indicate that midazolam is an adequate sedative for ball pythons but does not suffice to achieve reliable immobilization or anesthesia, whereas tiletamine+zolazepam achieves short-term anesthesia in a dose-dependent manner.


Subject(s)
Boidae , Immobilization/veterinary , Midazolam/pharmacology , Tiletamine/pharmacology , Zolazepam/pharmacology , Anesthetics, Dissociative/administration & dosage , Anesthetics, Dissociative/pharmacology , Animals , Drug Administration Schedule , Drug Combinations , Female , Heart Rate/drug effects , Immobilization/methods , Injections, Intramuscular , Male , Midazolam/administration & dosage , Respiration/drug effects , Tiletamine/administration & dosage , Zolazepam/administration & dosage
15.
Am J Trop Med Hyg ; 98(3): 864-867, 2018 03.
Article in English | MEDLINE | ID: mdl-29405107

ABSTRACT

To evaluate potential immunocompetent small animal models of Zika virus (ZIKV) infection, we inoculated Syrian golden hamsters (subcutaneously or intraperitoneally) and strain 13 guinea pigs (intraperitoneally) with Senegalese ZIKV strain ArD 41525 or Philippines ZIKV strain CPC-0740. We did not detect viremia in hamsters inoculated subcutaneously with either virus strain, although some hamsters developed virus neutralizing antibodies. However, we detected statistically significant higher viremias (P = 0.0285) and a higher median neutralization titer (P = 0.0163) in hamsters inoculated intraperitoneally with strain ArD 41525 compared with strain CPC-0740. Furthermore, some hamsters inoculated with strain ArD 41525 displayed mild signs of disease. By contrast, strain 13 guinea pigs inoculated intraperitoneally with either strain did not have detectable viremias and less than half developed virus neutralizing antibodies. Our results support the use of the Syrian golden hamster intraperitoneal model to explore phenotypic variation between ZIKV strains.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Disease Resistance , Viremia/virology , Zika Virus Infection/virology , Zika Virus/immunology , Animals , Disease Models, Animal , Female , Guinea Pigs , Host Specificity , Injections, Intraperitoneal , Injections, Subcutaneous , Mesocricetus , Viremia/immunology , Zika Virus/growth & development , Zika Virus Infection/immunology
16.
J Am Assoc Lab Anim Sci ; 56(2): 181-189, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28315649

ABSTRACT

The ability to quickly and accurately determine cortisol as a biomarker for stress is a valuable tool in assessing the wellbeing of NHP. In this study, 2 methods of collecting saliva (a commercial collection device and passive drool) and the resulting free salivary cortisol levels were compared with total serum cortisol concentration in rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis) and African green monkeys (Chlorocebus aethiops) at 2 collection time points. Serum and salivary cortisol levels were determined using a competitive quantitative ELISA. In addition, both saliva collection methods were evaluated for volume collected and ease of use. Compared with passive drool, the experimental collection device was more reliable in collecting sufficient volumes of saliva, and the resulting salivary cortisol values demonstrated stronger correlation with serum cortisol concentration in all species and collection days except cynomolgus macaques on day 1. This saliva collection device allows quick and reliable sample collection for the determination of salivary cortisol levels. In addition, the results might provide a useful tool for evaluating hypothalamic-pituitary-adrenal axis activity or the physiologic stress reaction in NHP as well as a biomarker of psychologic stress states in a variety of situations.


Subject(s)
Chlorocebus aethiops/physiology , Hydrocortisone/chemistry , Macaca/physiology , Saliva/chemistry , Specimen Handling/veterinary , Animals , Laboratory Animal Science , Male , Specimen Handling/methods
17.
Article in English | MEDLINE | ID: mdl-28804644

ABSTRACT

The Plasmodium falciparum protein, apical membrane antigen 1 forms a complex with another parasite protein, rhoptry neck protein 2, to initiate junction formation with the erythrocyte and is essential for merozoite invasion during the blood stage of infection. Consequently, apical membrane antigen 1 has been a target of vaccine development but vaccination with apical membrane antigen 1 alone in controlled human malaria infections failed to protect and showed limited efficacy in field trials. Here we show that vaccination with AMA1-RON2L complex in Freund's adjuvant protects Aotus monkeys against a virulent Plasmodium falciparum infection. Vaccination with AMA1 alone gave only partial protection, delaying infection in one of eight animals. However, the AMA1-RON2L complex vaccine completely protected four of eight monkeys and substantially delayed infection (>25 days) in three of the other four animals. Interestingly, antibodies from monkeys vaccinated with the AMA1-RON2L complex had significantly higher neutralizing activity than antibodies from monkeys vaccinated with AMA1 alone. Importantly, we show that antibodies from animals vaccinated with the complex have significantly higher neutralization activity against non-vaccine type parasites. We suggest that vaccination with the AMA1-RON2L complex induces functional antibodies that better recognize AMA1 as it appears complexed with RON2 during merozoite invasion. These data justify progression of this next generation AMA1 vaccine towards human trials.

18.
Cell Host Microbe ; 17(1): 130-9, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25590760

ABSTRACT

Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans.


Subject(s)
Carrier Proteins/immunology , Immunity, Heterologous , Malaria Vaccines/immunology , Malaria/prevention & control , Animals , Antibodies, Neutralizing/blood , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Aotus trivirgatus , Disease Models, Animal , Female , Malaria/immunology , Malaria Vaccines/administration & dosage , Neutralization Tests
SELECTION OF CITATIONS
SEARCH DETAIL