Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
PLoS Genet ; 9(1): e1003197, 2013.
Article in English | MEDLINE | ID: mdl-23341780

ABSTRACT

Homolog pairing and crossing over during meiosis I prophase is required for accurate chromosome segregation to form euploid gametes. The repair of Spo11-induced double-strand breaks (DSB) using a homologous chromosome template is a major driver of pairing in many species, including fungi, plants, and mammals. Inappropriate pairing and crossing over at ectopic loci can lead to chromosome rearrangements and aneuploidy. How (or if) inappropriate ectopic interactions are disrupted in favor of allelic interactions is not clear. Here we used an in vivo "collision" assay in budding yeast to test the contributions of cohesion and the organization and motion of chromosomes in the nucleus on promoting or antagonizing interactions between allelic and ectopic loci at interstitial chromosome sites. We found that deletion of the cohesin subunit Rec8, but not other chromosome axis proteins (e.g. Red1, Hop1, or Mek1), caused an increase in homolog-nonspecific chromosome interaction, even in the absence of Spo11. This effect was partially suppressed by expression of the mitotic cohesin paralog Scc1/Mdc1, implicating Rec8's role in cohesion rather than axis integrity in preventing nonspecific chromosome interactions. Disruption of telomere-led motion by treating cells with the actin polymerization inhibitor Latrunculin B (Lat B) elevated nonspecific collisions in rec8Δ spo11Δ. Next, using a visual homolog-pairing assay, we found that the delay in homolog pairing in mutants defective for telomere-led chromosome motion (ndj1Δ or csm4Δ) is enhanced in Lat B-treated cells, implicating actin in more than one process promoting homolog juxtaposition. We suggest that multiple, independent contributions of actin, cohesin, and telomere function are integrated to promote stable homolog-specific interactions and to destabilize weak nonspecific interactions by modulating the elastic spring-like properties of chromosomes.


Subject(s)
Chromosome Pairing/genetics , Endodeoxyribonucleases , Meiotic Prophase I/genetics , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Nucleus/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation/genetics , DNA Breaks, Double-Stranded , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Meiosis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Telomere/genetics , Telomere/metabolism , Cohesins
2.
PLoS Genet ; 9(7): e1003586, 2013.
Article in English | MEDLINE | ID: mdl-23874210

ABSTRACT

The number and distribution of crossover events are tightly regulated at prophase of meiosis I. The resolution of Holliday junctions by structure-specific endonucleases, including MUS-81, SLX-1, XPF-1 and GEN-1, is one of the main mechanisms proposed for crossover formation. However, how these nucleases coordinately resolve Holliday junctions is still unclear. Here we identify both the functional overlap and differences between these four nucleases regarding their roles in crossover formation and control in the Caenorhabditis elegans germline. We show that MUS-81, XPF-1 and SLX-1, but not GEN-1, can bind to HIM-18/SLX4, a key scaffold for nucleases. Analysis of synthetic mitotic defects revealed that MUS-81 and SLX-1, but not XPF-1 and GEN-1, have overlapping roles with the Bloom syndrome helicase ortholog, HIM-6, supporting their in vivo roles in processing recombination intermediates. Taking advantage of the ease of genetic analysis and high-resolution imaging afforded by C. elegans, we examined crossover designation, frequency, distribution and chromosomal morphology in single, double, triple and quadruple mutants of the structure-specific endonucleases. This revealed that XPF-1 functions redundantly with MUS-81 and SLX-1 in executing crossover formation during meiotic double-strand break repair. Analysis of crossover distribution revealed that SLX-1 is required for crossover suppression at the center region of the autosomes. Finally, analysis of chromosome morphology in oocytes at late meiosis I stages uncovered that SLX-1 and XPF-1 promote meiotic chromosomal stability by preventing formation of chromosomal abnormalities. We propose a model in which coordinate action between structure-specific nucleases at different chromosome domains, namely MUS-81, SLX-1 and XPF-1 at the arms and SLX-1 at the center region, exerts positive and negative regulatory roles, respectively, for crossover control during C. elegans meiosis.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Crossing Over, Genetic , DNA Helicases/metabolism , Deoxyribonucleases/genetics , Endonucleases/genetics , Meiosis/genetics , Animals , Caenorhabditis elegans/genetics , Chromosome Segregation/genetics , DNA Helicases/genetics , DNA, Cruciform/genetics , Deoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Oocytes/metabolism , Protein Binding , Recombination, Genetic
3.
Adv Exp Med Biol ; 757: 133-70, 2013.
Article in English | MEDLINE | ID: mdl-22872477

ABSTRACT

Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two -successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans.


Subject(s)
Caenorhabditis elegans/physiology , Meiosis/physiology , Animals , Caenorhabditis elegans/growth & development
4.
Genetics ; 173(3): 1207-22, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16648640

ABSTRACT

A unique aspect of meiosis is the segregation of homologous chromosomes at the meiosis I division. The pairing of homologous chromosomes is a critical aspect of meiotic prophase I that aids proper disjunction at anaphase I. We have used a site-specific recombination assay in Saccharomyces cerevisiae to examine allelic interaction levels during meiosis in a series of mutants defective in recombination, chromatin structure, or intracellular movement. Red1, a component of the chromosome axis, and Mnd1, a chromosome-binding protein that facilitates interhomolog interaction, are critical for achieving high levels of allelic interaction. Homologous recombination factors (Sae2, Rdh54, Rad54, Rad55, Rad51, Sgs1) aid in varying degrees in promoting allelic interactions, while the Srs2 helicase appears to play no appreciable role. Ris1 (a SWI2/SNF2 related protein) and Dot1 (a histone methyltransferase) appear to play minor roles. Surprisingly, factors involved in microtubule-mediated intracellular movement (Tub3, Dhc1, and Mlp2) appear to play no appreciable role in homolog juxtaposition, unlike their counterparts in fission yeast. Taken together, these results support the notion that meiotic recombination plays a major role in the high levels of homolog interaction observed during budding yeast meiosis.


Subject(s)
Meiotic Prophase I , Recombination, Genetic , Saccharomyces cerevisiae/genetics , Alleles , Chromatin , Chromosome Breakage , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair , Dyneins/genetics , Dyneins/metabolism , Microtubules/genetics , Microtubules/metabolism , Models, Genetic , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phenotype , RNA-Binding Proteins , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/cytology , Saccharomycetales/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL