Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Biol Chem ; : 107607, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084460

ABSTRACT

The N-terminal region of the human Lysine Specific Demethylase 1 (LSD1) has no predicted structural elements, contains a nuclear localization signal (NLS), undergoes multiple post-translational modifications (PTMs), and acts as a protein-protein interaction hub. This intrinsically disordered region (IDR) extends from core LSD1 structure, resides atop the catalytic active site, and is known to be dispensable for catalysis. Here, we show differential nucleosome binding between the full-length and an N-terminus deleted LSD1 and identify that a conserved NLS and PTM containing element of the N-terminus contains an alpha helical structure, and that this conserved element impacts demethylation. Enzyme assays reveal that LSD1's own electropositive NLS amino acids 107-120 inhibit demethylation activity on a model Histone 3 lysine 4 di-methyl (H3K4me2) peptide (Kiapp ∼ 3.3 µM) and H3K4me2 nucleosome substrates (IC50 ∼ 30.4 µM), likely mimicking the histone H3 tail. Further, when the identical, inhibitory NLS region contains phosphomimetic modifications, inhibition is partially relieved. Based upon these results and biophysical data, a regulatory mechanism for the LSD1-catalyzed demethylation reaction is proposed whereby NLS-mediated autoinhibition can occur through electrostatic interactions, and be partially relieved through phosphorylation that occurs proximal to the NLS. Taken together, the results highlight a dynamic and synergistic role for PTMs, IDRs, and structured regions near LSD1 active site and introduces the notion that phosphorylated mediated NLS regions can function to fine-tune chromatin modifying enzyme activity.

2.
Gastroenterology ; 162(4): 1226-1241, 2022 04.
Article in English | MEDLINE | ID: mdl-34954226

ABSTRACT

BACKGROUND & AIMS: Sulfoconjugation of small molecules or protein peptides is a key mechanism to ensure biochemical and functional homeostasis in mammals. The PAPS synthase 2 (PAPSS2) is the primary enzyme to synthesize the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF), in which oxidative stress is a key pathogenic event, whereas sulfation of APAP contributes to its detoxification. The goal of this study was to determine whether and how PAPSS2 plays a role in APAP-induced ALF. METHODS: Gene expression was analyzed in APAP-induced ALF in patients and mice. Liver-specific Papss2-knockout mice using Alb-Cre (Papss2ΔHC) or AAV8-TBG-Cre (Papss2iΔHC) were created and subjected to APAP-induced ALF. Primary human and mouse hepatocytes were used for in vitro mechanistic analysis. RESULTS: The hepatic expression of PAPSS2 was decreased in APAP-induced ALF in patients and mice. Surprisingly, Papss2ΔHC mice were protected from APAP-induced hepatotoxicity despite having a decreased APAP sulfation, which was accompanied by increased hepatic antioxidative capacity through the activation of the p53-p2-Nrf2 axis. Treatment with a sulfation inhibitor also ameliorated APAP-induced hepatotoxicity. Gene knockdown experiments showed that the hepatoprotective effect of Papss2ΔHC was Nrf2, p53, and p21 dependent. Mechanistically, we identified p53 as a novel substrate of sulfation. Papss2 ablation led to p53 protein accumulation by preventing p53 sulfation, which disrupts p53-MDM2 interaction and p53 ubiquitination and increases p53 protein stability. CONCLUSIONS: We have uncovered a previously unrecognized and p53-mediated role of PAPSS2 in controlling oxidative response. Inhibition of p53 sulfation may be explored for the clinical management of APAP overdose.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Failure, Acute , Acetaminophen/toxicity , Animals , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Humans , Liver/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/metabolism , Liver Failure, Acute/prevention & control , Mammals/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Tumor Suppressor Protein p53/metabolism
3.
J Biol Chem ; 297(5): 101293, 2021 11.
Article in English | MEDLINE | ID: mdl-34634304

ABSTRACT

Golgi-resident bisphosphate nucleotidase 2 (BPNT2) is a member of a family of magnesium-dependent, lithium-inhibited phosphatases that share a three-dimensional structural motif that directly coordinates metal binding to effect phosphate hydrolysis. BPNT2 catalyzes the breakdown of 3'-phosphoadenosine-5'-phosphate, a by-product of glycosaminoglycan (GAG) sulfation. KO of BPNT2 in mice leads to skeletal abnormalities because of impaired GAG sulfation, especially chondroitin-4-sulfation, which is critical for proper extracellular matrix development. Mutations in BPNT2 have also been found to underlie a chondrodysplastic disorder in humans. The precise mechanism by which the loss of BPNT2 impairs sulfation remains unclear. Here, we used mouse embryonic fibroblasts (MEFs) to test the hypothesis that the catalytic activity of BPNT2 is required for GAG sulfation in vitro. We show that a catalytic-dead Bpnt2 construct (D108A) does not rescue impairments in intracellular or secreted sulfated GAGs, including decreased chondroitin-4-sulfate, present in Bpnt2-KO MEFs. We also demonstrate that missense mutations in Bpnt2 adjacent to the catalytic site, which are known to cause chondrodysplasia in humans, recapitulate defects in overall GAG sulfation and chondroitin-4-sulfation in MEF cultures. We further show that treatment of MEFs with lithium (a common psychotropic medication) inhibits GAG sulfation and that this effect depends on the presence of BPNT2. Taken together, this work demonstrates that the catalytic activity of an enzyme potently inhibited by lithium can modulate GAG sulfation and therefore extracellular matrix composition, revealing new insights into lithium pharmacology.


Subject(s)
Enzyme Inhibitors/pharmacology , Glycosaminoglycans/metabolism , Lithium/pharmacology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism , Animals , Catalysis , Cell Line , Glycosaminoglycans/genetics , Mice , Mice, Knockout , Phosphoric Monoester Hydrolases/genetics
4.
Gastroenterology ; 161(1): 271-286.e11, 2021 07.
Article in English | MEDLINE | ID: mdl-33819483

ABSTRACT

BACKGROUND & AIMS: Sulfation is a conjugation reaction essential for numerous biochemical and cellular functions in mammals. The 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase 2 (PAPSS2) is the key enzyme to generate PAPS, which is the universal sulfonate donor for all sulfation reactions. The goal of this study was to determine whether and how PAPSS2 plays a role in colitis and colonic carcinogenesis. METHODS: Tissue arrays of human colon cancer specimens, gene expression data, and clinical features of cancer patients were analyzed. Intestinal-specific Papss2 knockout mice (Papss2ΔIE) were created and subjected to dextran sodium sulfate-induced colitis and colonic carcinogenesis induced by a combined treatment of azoxymethane and dextran sodium sulfate or azoxymethane alone. RESULTS: The expression of PAPSS2 is decreased in the colon cancers of mice and humans. The lower expression of PAPSS2 in colon cancer patients is correlated with worse survival. Papss2ΔIE mice showed heightened sensitivity to colitis and colon cancer by damaging the intestinal mucosal barrier, increasing intestinal permeability and bacteria infiltration, and worsening the intestinal tumor microenvironment. Mechanistically, the Papss2ΔIE mice exhibited reduced intestinal sulfomucin content. Metabolomic analyses revealed the accumulation of bile acids, including the Farnesoid X receptor antagonist bile acid tauro-ß-muricholic acid, and deficiency in the formation of bile acid sulfates in the colon of Papss2ΔIE mice. CONCLUSIONS: We have uncovered an important role of PAPSS2-mediated sulfation in colitis and colonic carcinogenesis. Intestinal sulfation may represent a potential diagnostic marker and PAPSS2 may serve as a potential therapeutic target for inflammatory bowel disease and colon cancer.


Subject(s)
Colitis-Associated Neoplasms/prevention & control , Colitis/prevention & control , Colon/enzymology , Intestinal Mucosa/enzymology , Mucins/metabolism , Multienzyme Complexes/metabolism , Sulfate Adenylyltransferase/metabolism , Animals , Bile Acids and Salts/metabolism , Colitis/enzymology , Colitis/genetics , Colitis/pathology , Colitis-Associated Neoplasms/enzymology , Colitis-Associated Neoplasms/genetics , Colitis-Associated Neoplasms/pathology , Colon/pathology , Databases, Genetic , Disease Models, Animal , Humans , Intestinal Mucosa/pathology , Metabolome , Metabolomics , Mice, Inbred C57BL , Mice, Knockout , Multienzyme Complexes/genetics , Prognosis , Receptors, Cytoplasmic and Nuclear/metabolism , Sulfate Adenylyltransferase/genetics
5.
RNA ; 22(8): 1250-60, 2016 08.
Article in English | MEDLINE | ID: mdl-27277658

ABSTRACT

Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1-CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K(+)) is required for high affinity binding to the LSD1-CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms.


Subject(s)
G-Quadruplexes , Histone Demethylases/metabolism , Lysine/metabolism , RNA/metabolism
6.
J Hepatol ; 64(2): 409-418, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26394163

ABSTRACT

BACKGROUND & AIMS: Glycine N-methyltransferase (GNMT) expression is decreased in some patients with severe non-alcoholic fatty liver disease. Gnmt deficiency in mice (Gnmt-KO) results in abnormally elevated serum levels of methionine and its metabolite S-adenosylmethionine (SAMe), and this leads to rapid liver steatosis development. Autophagy plays a critical role in lipid catabolism (lipophagy), and defects in autophagy have been related to liver steatosis development. Since methionine and its metabolite SAMe are well known inactivators of autophagy, we aimed to examine whether high levels of both metabolites could block autophagy-mediated lipid catabolism. METHODS: We examined methionine levels in a cohort of 358 serum samples from steatotic patients. We used hepatocytes cultured with methionine and SAMe, and hepatocytes and livers from Gnmt-KO mice. RESULTS: We detected a significant increase in serum methionine levels in steatotic patients. We observed that autophagy and lipophagy were impaired in hepatocytes cultured with high methionine and SAMe, and that Gnmt-KO livers were characterized by an impairment in autophagy functionality, likely caused by defects at the lysosomal level. Elevated levels of methionine and SAMe activated PP2A by methylation, while blocking PP2A activity restored autophagy flux in Gnmt-KO hepatocytes, and in hepatocytes treated with SAMe and methionine. Finally, normalization of methionine and SAMe levels in Gnmt-KO mice using a methionine deficient diet normalized the methylation capacity, PP2A methylation, autophagy, and ameliorated liver steatosis. CONCLUSIONS: These data suggest that elevated levels of methionine and SAMe can inhibit autophagic catabolism of lipids contributing to liver steatosis.


Subject(s)
Autophagy/physiology , Fatty Liver/metabolism , Hepatocytes/metabolism , Methionine/blood , Protein Phosphatase 2/metabolism , S-Adenosylmethionine/blood , Animals , Cell Culture Techniques , Disease Models, Animal , Fatty Liver/pathology , Humans , Methylation , Mice
7.
Lab Invest ; 95(2): 223-36, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25531568

ABSTRACT

Glycine-N-methyltransferase (GNMT) is essential to preserve liver homeostasis. Cirrhotic patients show low expression of GNMT that is absent in hepatocellular carcinoma (HCC) samples. Accordingly, GNMT deficiency in mice leads to steatohepatitis, fibrosis, cirrhosis, and HCC. Lack of GNMT triggers NK cell activation in GNMT(-/-) mice and depletion of TRAIL significantly attenuates acute liver injury and inflammation in these animals. Chronic inflammation leads to fibrogenesis, further contributing to the progression of chronic liver injury regardless of the etiology. The aim of our study is to elucidate the implication of TRAIL-producing NK cells in the progression of chronic liver injury and fibrogenesis. For this we generated double TRAIL(-/-)/GNMT(-/-) mice in which we found that TRAIL deficiency efficiently protected the liver against chronic liver injury and fibrogenesis in the context of GNMT deficiency. Next, to better delineate the implication of TRAIL-producing NK cells during fibrogenesis we performed bile duct ligation (BDL) to GNMT(-/-) and TRAIL(-/-)/GNMT(-/-) mice. In GNMT(-/-) mice, exacerbated fibrogenic response after BDL concurred with NK1.1(+) cell activation. Importantly, specific inhibition of TRAIL-producing NK cells efficiently protected GNMT(-/-) mice from BDL-induced liver injury and fibrogenesis. Finally, TRAIL(-/-)/GNMT(-/-) mice showed significantly less fibrosis after BDL than GNMT(-/-) mice further underlining the relevance of the TRAIL/DR5 axis in mediating liver injury and fibrogenesis in GNMT(-/-) mice. Finally, in vivo silencing of DR5 efficiently protected GNMT(-/-) mice from BDL-liver injury and fibrogenesis, overall underscoring the key role of the TRAIL/DR5 axis in promoting fibrogenesis in the context of absence of GNMT. Overall, our work demonstrates that TRAIL-producing NK cells actively contribute to liver injury and further fibrogenesis in the pathological context of GNMT deficiency, a molecular scenario characteristic of chronic human liver disease.


Subject(s)
Amino Acid Metabolism, Inborn Errors/immunology , End Stage Liver Disease/etiology , End Stage Liver Disease/pathology , Glycine N-Methyltransferase/deficiency , Killer Cells, Natural/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , Animals , Bile Ducts/surgery , Blotting, Western , Flow Cytometry , Glycine N-Methyltransferase/immunology , Humans , Immunohistochemistry , Ligation , Mice , Mice, Knockout , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
8.
J Hepatol ; 62(3): 673-81, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25457203

ABSTRACT

BACKGROUND & AIMS: Very-low-density lipoproteins (VLDLs) export lipids from the liver to peripheral tissues and are the precursors of low-density-lipoproteins. Low levels of hepatic S-adenosylmethionine (SAMe) decrease triglyceride (TG) secretion in VLDLs, contributing to hepatosteatosis in methionine adenosyltransferase 1A knockout mice but nothing is known about the effect of SAMe on the circulating VLDL metabolism. We wanted to investigate whether excess SAMe could disrupt VLDL plasma metabolism and unravel the mechanisms involved. METHODS: Glycine N-methyltransferase (GNMT) knockout (KO) mice, GNMT and perilipin-2 (PLIN2) double KO (GNMT-PLIN2-KO) and their respective wild type (WT) controls were used. A high fat diet (HFD) or a methionine deficient diet (MDD) was administrated to exacerbate or recover VLDL metabolism, respectively. Finally, 33 patients with non-alcoholic fatty-liver disease (NAFLD); 11 with hypertriglyceridemia and 22 with normal lipidemia were used in this study. RESULTS: We found that excess SAMe increases the turnover of hepatic TG stores for secretion in VLDL in GNMT-KO mice, a model of NAFLD with high SAMe levels. The disrupted VLDL assembly resulted in the secretion of enlarged, phosphatidylethanolamine-poor, TG- and apoE-enriched VLDL-particles; special features that lead to increased VLDL clearance and decreased serum TG levels. Re-establishing normal SAMe levels restored VLDL secretion, features and metabolism. In NAFLD patients, serum TG levels were lower when hepatic GNMT-protein expression was decreased. CONCLUSIONS: Excess hepatic SAMe levels disrupt VLDL assembly and features and increase circulating VLDL clearance, which will cause increased VLDL-lipid supply to tissues and might contribute to the extrahepatic complications of NAFLD.


Subject(s)
Lipoproteins, VLDL/blood , Non-alcoholic Fatty Liver Disease/metabolism , S-Adenosylmethionine/metabolism , Adult , Aged , Aged, 80 and over , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Glycine N-Methyltransferase/deficiency , Glycine N-Methyltransferase/genetics , Glycine N-Methyltransferase/metabolism , Humans , Lipoproteins, VLDL/metabolism , Liver/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Middle Aged , Models, Biological , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Perilipin-2 , S-Adenosylmethionine/deficiency , Triglycerides/metabolism , Young Adult
9.
Hippocampus ; 24(7): 840-52, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24687756

ABSTRACT

The hippocampus is a brain area characterized by its high plasticity, observed at all levels of organization: molecular, synaptic, and cellular, the latter referring to the capacity of neural precursors within the hippocampus to give rise to new neurons throughout life. Recent findings suggest that promoter methylation is a plastic process subjected to regulation, and this plasticity seems to be particularly important for hippocampal neurogenesis. We have detected the enzyme GNMT (a liver metabolic enzyme) in the hippocampus. GNMT regulates intracellular levels of SAMe, which is a universal methyl donor implied in almost all methylation reactions and, thus, of prime importance for DNA methylation. In addition, we show that deficiency of this enzyme in mice (Gnmt-/-) results in high SAMe levels within the hippocampus, reduced neurogenic capacity, and spatial learning and memory impairment. In vitro, SAMe inhibited neural precursor cell division in a concentration-dependent manner, but only when proliferation signals were triggered by bFGF. Indeed, SAMe inhibited the bFGF-stimulated MAP kinase signaling cascade, resulting in decreased cyclin E expression. These results suggest that alterations in the concentration of SAMe impair neurogenesis and contribute to cognitive decline.


Subject(s)
Amino Acid Metabolism, Inborn Errors/psychology , Cognition/physiology , Glycine N-Methyltransferase/deficiency , Hippocampus/enzymology , Nerve Tissue Proteins/physiology , Neurogenesis/physiology , S-Adenosylmethionine/physiology , Animals , Cyclin E/biosynthesis , Cyclin E/genetics , Fibroblast Growth Factor 2/antagonists & inhibitors , Fibroblast Growth Factor 2/pharmacology , Gene Expression Regulation , Glycine N-Methyltransferase/genetics , Glycine N-Methyltransferase/physiology , Hippocampus/physiopathology , MAP Kinase Signaling System/drug effects , Maze Learning/physiology , Memory Disorders/enzymology , Memory Disorders/etiology , Methionine/metabolism , Methionine Adenosyltransferase/deficiency , Methionine Adenosyltransferase/genetics , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Neuronal Plasticity , Rotarod Performance Test , S-Adenosylmethionine/biosynthesis
10.
Biochem Biophys Res Commun ; 449(4): 392-8, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-24858690

ABSTRACT

Dimethylglycine dehydrogenase (DMGDH) is a mammalian mitochondrial enzyme which plays an important role in the utilization of methyl groups derived from choline. DMGDH is a flavin containing enzyme which catalyzes the oxidative demethylation of dimethylglycine in vitro with the formation of sarcosine (N-methylglycine), hydrogen peroxide and formaldehyde. DMGDH binds tetrahydrofolate (THF) in vivo, which serves as an acceptor of formaldehyde and in the cell the product of the reaction is 5,10-methylenetetrahydrofolate instead of formaldehyde. To gain insight into the mechanism of the reaction we solved the crystal structures of the recombinant mature and precursor forms of rat DMGDH and DMGDH-THF complexes. Both forms of DMGDH reveal similar kinetic parameters and have the same tertiary structure fold with two domains formed by N- and C-terminal halves of the protein. The active center is located in the N-terminal domain while the THF binding site is located in the C-terminal domain about 40Å from the isoalloxazine ring of FAD. The folate binding site is connected with the enzyme active center via an intramolecular channel. This suggests the possible transfer of the intermediate imine of dimethylglycine from the active center to the bound THF where they could react producing a 5,10-methylenetetrahydrofolate. Based on the homology of the rat and human DMGDH the structural basis for the mechanism of inactivation of the human DMGDH by naturally occurring His109Arg mutation is proposed.


Subject(s)
Dimethylglycine Dehydrogenase/chemistry , Mitochondrial Proteins/chemistry , Tetrahydrofolates/chemistry , Amino Acid Sequence , Animals , Binding Sites , Catalytic Domain , Crystallization , Crystallography, X-Ray , Dimethylglycine Dehydrogenase/metabolism , Humans , Kinetics , Mitochondrial Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Rats , Sarcosine/analogs & derivatives , Tetrahydrofolates/metabolism
11.
Hepatology ; 58(4): 1296-305, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23505042

ABSTRACT

UNLABELLED: Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are the primary genes involved in hepatic S-adenosylmethionine (SAMe) synthesis and degradation, respectively. Mat1a ablation in mice induces a decrease in hepatic SAMe, activation of lipogenesis, inhibition of triglyceride (TG) release, and steatosis. Gnmt-deficient mice, despite showing a large increase in hepatic SAMe, also develop steatosis. We hypothesized that as an adaptive response to hepatic SAMe accumulation, phosphatidylcholine (PC) synthesis by way of the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway is stimulated in Gnmt(-/-) mice. We also propose that the excess PC thus generated is catabolized, leading to TG synthesis and steatosis by way of diglyceride (DG) generation. We observed that Gnmt(-/-) mice present with normal hepatic lipogenesis and increased TG release. We also observed that the flux from PE to PC is stimulated in the liver of Gnmt(-/-) mice and that this results in a reduction in PE content and a marked increase in DG and TG. Conversely, reduction of hepatic SAMe following the administration of a methionine-deficient diet reverted the flux from PE to PC of Gnmt(-/-) mice to that of wildtype animals and normalized DG and TG content preventing the development of steatosis. Gnmt(-/-) mice with an additional deletion of perilipin2, the predominant lipid droplet protein, maintain high SAMe levels, with a concurrent increased flux from PE to PC, but do not develop liver steatosis. CONCLUSION: These findings indicate that excess SAMe reroutes PE towards PC and TG synthesis and lipid sequestration.


Subject(s)
Liver/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , S-Adenosylmethionine/metabolism , Triglycerides/metabolism , Animals , Disease Models, Animal , Fatty Liver/metabolism , Fatty Liver/physiopathology , Female , Glycine N-Methyltransferase/deficiency , Glycine N-Methyltransferase/genetics , Homeostasis/physiology , Lipid Metabolism/physiology , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Knockout , Perilipin-2
12.
Biochim Biophys Acta ; 1824(2): 286-91, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22037183

ABSTRACT

Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinant protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme.


Subject(s)
Glycine N-Methyltransferase/metabolism , Liver/enzymology , Models, Molecular , Recombinant Proteins/metabolism , Animals , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Glycine N-Methyltransferase/antagonists & inhibitors , Glycine N-Methyltransferase/chemistry , Glycine N-Methyltransferase/isolation & purification , Hydrogen Bonding , Protein Binding , Rats , Recombinant Proteins/chemistry , Tetrahydrofolates/chemistry , Tetrahydrofolates/metabolism , Valine/metabolism
13.
Gastroenterology ; 143(3): 787-798.e13, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22687285

ABSTRACT

BACKGROUND & AIMS: Patients with cirrhosis are at high risk for developing hepatocellular carcinoma (HCC), and their liver tissues have abnormal levels of S-adenosylmethionine (SAMe). Glycine N-methyltransferase (GNMT) catabolizes SAMe, but its expression is down-regulated in HCC cells. Mice that lack GNMT develop fibrosis and hepatomas and have alterations in signaling pathways involved in carcinogenesis. We investigated the role of GNMT in human HCC cell lines and in liver carcinogenesis in mice. METHODS: We studied hepatoma cells from GNMT knockout mice and analyzed the roles of liver kinase B1 (LKB1, STK11) signaling via 5'-adenosine monophosphate-activated protein kinase (AMPK) and Ras in regulating proliferation and transformation. RESULTS: Hepatoma cells from GNMT mice had defects in LKB1 signaling to AMPK, making them resistant to induction of apoptosis by adenosine 3',5'-cyclic monophosphate activation of protein kinase A and calcium/calmodulin-dependent protein kinase kinase 2. Ras-mediated hyperactivation of LKB1 promoted proliferation of GNMT-deficient hepatoma cells and required mitogen-activated protein kinase 2 (ERK) and ribosomal protein S6 kinase polypeptide 2 (p90RSK). Ras activation of LKB1 required expression of RAS guanyl releasing protein 3 (RASGRP3). Reduced levels of GNMT and phosphorylation of AMPKα at Thr172 and increased levels of Ras, LKB1, and RASGRP3 in HCC samples from patients were associated with shorter survival times. CONCLUSIONS: Reduced expression of GNMT in mouse hepatoma cells and human HCC cells appears to increase activity of LKB1 and RAS; activation of RAS signaling to LKB1 and RASGRP3, via ERK and p90RSK, might be involved in liver carcinogenesis and be used as a prognostic marker. Reagents that disrupt this pathway might be developed to treat patients with HCC.


Subject(s)
Carcinoma, Hepatocellular/enzymology , Glycine N-Methyltransferase/deficiency , Liver Neoplasms/enzymology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , ras Proteins/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis , Azacitidine/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Methylation , Enzyme Activation , Enzyme Inhibitors/pharmacology , Glycine N-Methyltransferase/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , RNA Interference , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction/drug effects , Time Factors , Transfection , Tumor Burden , ras Guanine Nucleotide Exchange Factors
14.
Hepatology ; 56(2): 747-59, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22392635

ABSTRACT

UNLABELLED: Glycine N-methyltransferase (GNMT) catabolizes S-adenosylmethionine (SAMe), the main methyl donor of the body. Patients with cirrhosis show attenuated GNMT expression, which is absent in hepatocellular carcinoma (HCC) samples. GNMT(-/-) mice develop spontaneous steatosis that progresses to steatohepatitis, cirrhosis, and HCC. The liver is highly enriched with innate immune cells and plays a key role in the body's host defense and in the regulation of inflammation. Chronic inflammation is the major hallmark of nonalcoholic steatohepatitis (NASH) progression. The aim of our study was to uncover the molecular mechanisms leading to liver chronic inflammation in the absence of GNMT, focusing on the implication of natural killer (NK) / natural killer T (NKT) cells. We found increased expression of T helper (Th)1- over Th2-related cytokines, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-R2/DR5, and several ligands of NK cells in GNMT(-/-) livers. Interestingly, NK cells from GNMT(-/-) mice were spontaneously activated, expressed more TRAIL, and had strong cytotoxic activity, suggesting their contribution to the proinflammatory environment in the liver. Accordingly, NK cells mediated hypersensitivity to concanavalin A (ConA)-mediated hepatitis in GNMT(-/-) mice. Moreover, GNMT(-/-) mice were hypersensitive to endotoxin-mediated liver injury. NK cell depletion and adoptive transfer of TRAIL(-/-) liver-NK cells protected the liver against lipopolysaccharide (LPS) liver damage. CONCLUSION: Our data allow us to conclude that TRAIL-producing NK cells actively contribute to promote a proinflammatory environment at early stages of fatty liver disease, suggesting that this cell compartment may contribute to the progression of NASH.


Subject(s)
Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Fatty Liver/immunology , Fatty Liver/metabolism , Glycine N-Methyltransferase/metabolism , Killer Cells, Natural/immunology , Acute Disease , Adoptive Transfer , Animals , Apoptosis/drug effects , Apoptosis/immunology , Chemical and Drug Induced Liver Injury/pathology , Concanavalin A/toxicity , Disease Models, Animal , Fatty Liver/pathology , Glycine N-Methyltransferase/genetics , Glycine N-Methyltransferase/immunology , Killer Cells, Natural/pathology , Lipopolysaccharides/toxicity , Lymphocyte Depletion , Male , Mice , Mice, Knockout , Mitogens/toxicity , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/immunology , TNF-Related Apoptosis-Inducing Ligand/metabolism
15.
Mol Genet Metab ; 105(2): 228-36, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22137549

ABSTRACT

This paper reports studies of two patients proven by a variety of studies to have mitochondrial depletion syndromes due to mutations in either their MPV17 or DGUOK genes. Each was initially investigated metabolically because of plasma methionine concentrations as high as 15-21-fold above the upper limit of the reference range, then found also to have plasma levels of S-adenosylmethionine (AdoMet) 4.4-8.6-fold above the upper limit of the reference range. Assays of S-adenosylhomocysteine, total homocysteine, cystathionine, sarcosine, and other relevant metabolites and studies of their gene encoding glycine N-methyltransferase produced evidence suggesting they had none of the known causes of elevated methionine with or without elevated AdoMet. Patient 1 grew slowly and intermittently, but was cognitively normal. At age 7 years he was found to have hepatocellular carcinoma, underwent a liver transplant and died of progressive liver and renal failure at age almost 9 years. Patient 2 had a clinical course typical of DGUOK deficiency and died at age 8 ½ months. Although each patient had liver abnormalities, evidence is presented that such abnormalities are very unlikely to explain their elevations of AdoMet or the extent of their hypermethioninemias. A working hypothesis is presented suggesting that with mitochondrial depletion the normal usage of AdoMet by mitochondria is impaired, AdoMet accumulates in the cytoplasm of affected cells poor in glycine N-methyltransferase activity, the accumulated AdoMet causes methionine to accumulate by inhibiting activity of methionine adenosyltransferase II, and that both AdoMet and methionine consequently leak abnormally into the plasma.


Subject(s)
DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Glycine N-Methyltransferase/metabolism , Liver/metabolism , Liver/pathology , Membrane Proteins/metabolism , Methionine/metabolism , Mitochondrial Proteins/metabolism , S-Adenosylmethionine/metabolism , Adolescent , Base Sequence , Exons , Female , Glycine N-Methyltransferase/genetics , Humans , Infant , Male , Membrane Proteins/genetics , Methionine/blood , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Proteins/genetics , Molecular Sequence Data , Mutation , S-Adenosylmethionine/blood , Sequence Deletion
16.
Adv Biol Regul ; 83: 100858, 2022 01.
Article in English | MEDLINE | ID: mdl-34920982

ABSTRACT

Bisphosphate nucleotidase 2 (BPNT2) is a member of a family of phosphatases that are directly inhibited by lithium, the first-line medication for bipolar disorder. BPNT2 is localized to the Golgi, where it metabolizes the by-products of glycosaminoglycan sulfation reactions. BPNT2-knockout mice exhibit impairments in total-body chondroitin-4-sulfation which lead to abnormal skeletal development (chondrodysplasia). These mice die in the perinatal period, which has previously prevented the investigation of BPNT2 in the adult nervous system. Previous work has demonstrated the importance of chondroitin sulfation in the brain, as chondroitin-4-sulfate is a major component of perineuronal nets (PNNs), a specialized neuronal extracellular matrix which mediates synaptic plasticity and regulates certain behaviors. We hypothesized that the loss of BPNT2 in the nervous system would decrease chondroitin-4-sulfation and PNNs in the brain, which would coincide with behavioral abnormalities. We used Cre-lox breeding to knockout Bpnt2 specifically in the nervous system using Bpnt2 floxed (fl/fl) animals and a Nestin-driven Cre recombinase. These mice are viable into adulthood, and do not display gross physical abnormalities. We identified decreases in total glycosaminoglycan sulfation across selected brain regions, and specifically show decreases in chondroitin-4-sulfation which correspond with increases in chondroitin-6-sulfation. Interestingly, these changes were not correlated with gross alterations in PNNs. We also subjected these mice to a selection of neurobehavioral assessments and did not identify significant behavioral abnormalities. In summary, this work demonstrates that BPNT2, a known target of lithium, is important for glycosaminoglycan sulfation in the brain, suggesting that lithium-mediated inhibition of BPNT2 in the nervous system warrants further investigation.


Subject(s)
Cerebral Cortex , Chondroitin Sulfates , Hippocampus , Animals , Cerebral Cortex/metabolism , Chondroitin Sulfates/metabolism , Hippocampus/metabolism , Lithium Compounds/pharmacology , Mice , Nucleotidases/metabolism
17.
Biochemistry ; 50(21): 4750-6, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21510664

ABSTRACT

Methylation of lysine residues in histones has been known to serve a regulatory role in gene expression. Although enzymatic removal of the methyl groups was discovered as early as 1973, the enzymes responsible for their removal were isolated and their mechanism of action was described only recently. The first enzyme to show such activity was LSD1, a flavin-containing enzyme that removes the methyl groups from lysines 4 and 9 of histone 3 with the generation of formaldehyde from the methyl group. This reaction is similar to the previously described demethylation reactions conducted by the enzymes dimethylglycine dehydrogenase and sarcosine dehydrogenase, in which protein-bound tetrahydrofolate serves as an accepter of the formaldehyde that is generated. We now show that nuclear extracts of HeLa cells contain LSD1 that is associated with folate. Using the method of back-scattering interferometry, we have measured the binding of various forms of folate to both full-length LSD1 and a truncated form of LSD1 in free solution. The 6R,S form of the natural pentaglutamate form of tetrahydrofolate bound with the highest affinity (K(d) = 2.8 µM) to full-length LSD1. The fact that folate participates in the enzymatic demethylation of histones provides an opportunity for this micronutrient to play a role in the epigenetic control of gene expression.


Subject(s)
Folic Acid/metabolism , Histone Demethylases/metabolism , Chromatography, Gel , HeLa Cells , Humans
18.
Gastroenterology ; 138(5): 1943-53, 2010 May.
Article in English | MEDLINE | ID: mdl-20102719

ABSTRACT

BACKGROUND & AIMS: Hepatic de-differentiation, liver development, and malignant transformation are processes in which the levels of hepatic S-adenosylmethionine are tightly regulated by 2 genes: methionine adenosyltransferase 1A (MAT1A) and methionine adenosyltransferase 2A (MAT2A). MAT1A is expressed in the adult liver, whereas MAT2A expression primarily is extrahepatic and is associated strongly with liver proliferation. The mechanisms that regulate these expression patterns are not completely understood. METHODS: In silico analysis of the 3' untranslated region of MAT1A and MAT2A revealed putative binding sites for the RNA-binding proteins AU-rich RNA binding factor 1 (AUF1) and HuR, respectively. We investigated the posttranscriptional regulation of MAT1A and MAT2A by AUF1, HuR, and methyl-HuR in the aforementioned biological processes. RESULTS: During hepatic de-differentiation, the switch between MAT1A and MAT2A coincided with an increase in HuR and AUF1 expression. S-adenosylmethionine treatment altered this homeostasis by shifting the balance of AUF1 and methyl-HuR/HuR, which was identified as an inhibitor of MAT2A messenger RNA (mRNA) stability. We also observed a similar temporal distribution and a functional link between HuR, methyl-HuR, AUF1, and MAT1A and MAT2A during fetal liver development. Immunofluorescent analysis revealed increased levels of HuR and AUF1, and a decrease in methyl-HuR levels in human livers with hepatocellular carcinoma (HCC). CONCLUSIONS: Our data strongly support a role for AUF1 and HuR/methyl-HuR in liver de-differentiation, development, and human HCC progression through the posttranslational regulation of MAT1A and MAT2A mRNAs.


Subject(s)
Antigens, Surface/metabolism , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Hepatocytes/metabolism , Heterogeneous-Nuclear Ribonucleoprotein D/metabolism , Liver Neoplasms/metabolism , Methionine Adenosyltransferase/metabolism , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , Animals , Antigens, Surface/genetics , Binding Sites , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cells, Cultured , ELAV Proteins , ELAV-Like Protein 1 , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gestational Age , Glycine N-Methyltransferase/deficiency , Glycine N-Methyltransferase/genetics , Half-Life , Hepatocytes/pathology , Heterogeneous Nuclear Ribonucleoprotein D0 , Heterogeneous-Nuclear Ribonucleoprotein D/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Methionine Adenosyltransferase/genetics , Methylation , Mice , Mice, Inbred C57BL , RNA Interference , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Rats , Rats, Wistar , S-Adenosylmethionine/metabolism , Signal Transduction , Transfection
19.
Hepatology ; 52(1): 105-14, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20578266

ABSTRACT

UNLABELLED: Deletion of glycine N-methyltransferase (GNMT), the main gene involved in liver S-adenosylmethionine (SAM) catabolism, leads to the hepatic accumulation of this molecule and the development of fatty liver and fibrosis in mice. To demonstrate that the excess of hepatic SAM is the main agent contributing to liver disease in GNMT knockout (KO) mice, we treated 1.5-month-old GNMT-KO mice for 6 weeks with nicotinamide (NAM), a substrate of the enzyme NAM N-methyltransferase. NAM administration markedly reduced hepatic SAM content, prevented DNA hypermethylation, and normalized the expression of critical genes involved in fatty acid metabolism, oxidative stress, inflammation, cell proliferation, and apoptosis. More importantly, NAM treatment prevented the development of fatty liver and fibrosis in GNMT-KO mice. Because GNMT expression is down-regulated in patients with cirrhosis, and because some subjects with GNMT mutations have spontaneous liver disease, the clinical implications of the present findings are obvious, at least with respect to these latter individuals. Because NAM has been used for many years to treat a broad spectrum of diseases (including pellagra and diabetes) without significant side effects, it should be considered in subjects with GNMT mutations. CONCLUSION: The findings of this study indicate that the anomalous accumulation of SAM in GNMT-KO mice can be corrected by NAM treatment leading to the normalization of the expression of many genes involved in fatty acid metabolism, oxidative stress, inflammation, cell proliferation, and apoptosis, as well as reversion of the appearance of the pathologic phenotype.


Subject(s)
Fatty Liver/prevention & control , Glycine N-Methyltransferase/genetics , Liver Cirrhosis/prevention & control , Niacinamide/therapeutic use , S-Adenosylmethionine/metabolism , Animals , Fatty Liver/genetics , Gene Deletion , Gene Expression , Liver Cirrhosis/genetics , Mice , Mice, Knockout , S-Adenosylmethionine/antagonists & inhibitors
20.
J Proteome Res ; 9(9): 4501-12, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20684516

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in most western countries. Current NAFLD diagnosis methods (e.g., liver biopsy analysis or imaging techniques) are poorly suited as tests for such a prevalent condition, from both a clinical and financial point of view. The present work aims to demonstrate the potential utility of serum metabolic profiling in defining phenotypic biomarkers that could be useful in NAFLD management. A parallel animal model/human NAFLD exploratory metabolomics approach was employed, using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) to analyze 42 serum samples collected from nondiabetic, morbidly obese, biopsy-proven NAFLD patients, and 17 animals belonging to the glycine N-methyltransferase knockout (GNMT-KO) NAFLD mouse model. Multivariate statistical analysis of the data revealed a series of common biomarkers that were significantly altered in the NAFLD (GNMT-KO) subjects in comparison to their normal liver counterparts (WT). Many of the compounds observed could be associated with biochemical perturbations associated with liver dysfunction (e.g., reduced Creatine) and inflammation (e.g., eicosanoid signaling). This differential metabolic phenotyping approach may have a future role as a supplement for clinical decision making in NAFLD and in the adaption to more individualized treatment protocols.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics/methods , Animals , Biomarkers/blood , Disease Models, Animal , Disease Progression , Fatty Liver/blood , Glycine N-Methyltransferase/genetics , Humans , Lipid Metabolism , Male , Mice , Mice, Knockout , Multivariate Analysis , Non-alcoholic Fatty Liver Disease , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL