ABSTRACT
AGPAT2 (1-acyl-sn-glycerol-3-phosphate-acyltransferase-2) converts lysophosphatidic acid (LPA) into phosphatidic acid (PA), and mutations of the AGPAT2 gene cause the most common form of congenital generalized lipodystrophy which leads to steatohepatitis. The underlying mechanism by which AGPAT2 deficiency leads to lipodystrophy and steatohepatitis has not been elucidated. We addressed this question using an antisense oligonucleotide (ASO) to knockdown expression of Agpat2 in the liver and white adipose tissue (WAT) of adult male Sprague-Dawley rats. Agpat2 ASO treatment induced lipodystrophy and inflammation in WAT and the liver, which was associated with increased LPA content in both tissues, whereas PA content was unchanged. We found that a controlled-release mitochondrial protonophore (CRMP) prevented LPA accumulation and inflammation in WAT whereas an ASO against glycerol-3-phosphate acyltransferase, mitochondrial (Gpam) prevented LPA content and inflammation in the liver in Agpat2 ASO-treated rats. In addition, we show that overnutrition, due to high sucrose feeding, resulted in increased hepatic LPA content and increased activated macrophage content which were both abrogated with Gpam ASO treatment. Taken together, these data identify LPA as a key mediator of liver and WAT inflammation and lipodystrophy due to AGPAT2 deficiency as well as liver inflammation due to overnutrition and identify LPA as a potential therapeutic target to ameliorate these conditions.
Subject(s)
Fatty Liver , Lipodystrophy , Overnutrition , Male , Rats , Animals , Acyltransferases/metabolism , Glycerol , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Rats, Sprague-Dawley , Lipodystrophy/genetics , Adipose Tissue, White/metabolism , Phosphatidic Acids , Inflammation , PhosphatesABSTRACT
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, in which prognosis is determined by liver fibrosis. A common variant in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13, rs72613567-A) is associated with a reduced risk of fibrosis in NAFLD, but the underlying mechanism(s) remains unclear. We investigated the effects of this variant in the human liver and in Hsd17b13 knockdown in mice by using a state-of-the-art metabolomics approach. We demonstrate that protection against liver fibrosis conferred by the HSD17B13 rs72613567-A variant in humans and by the Hsd17b13 knockdown in mice is associated with decreased pyrimidine catabolism at the level of dihydropyrimidine dehydrogenase. Furthermore, we show that hepatic pyrimidines are depleted in two distinct mouse models of NAFLD and that inhibition of pyrimidine catabolism by gimeracil phenocopies the HSD17B13-induced protection against liver fibrosis. Our data suggest pyrimidine catabolism as a therapeutic target against the development of liver fibrosis in NAFLD.
Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Liver/metabolism , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/pathology , Pyrimidines/pharmacology , Pyrimidines/metabolismABSTRACT
BACKGROUND AND AIMS: A need exists for effective and practical tools to identify individuals at increased risk of liver-related outcomes (LROs) within the general population. APPROACH AND RESULTS: We externally validated the chronic liver disease (CLivD) score for LROs in the UK Biobank cohort. We also investigated the sequential combined use of CLivD and fibrosis-4 (FIB-4) scores. Our analysis included 369,832 adults without baseline liver disease and with available data for CLivD and FIB-4 computation. LROs reflecting compensated or decompensated liver cirrhosis or HCC were ascertained through linkages with electronic health care registries. Discriminatory performance and cumulative incidence were evaluated with competing-risk methodologies. Over a 10-year follow-up, time-dependent AUC values for LRO prediction were 0.80 for CLivD lab (including gamma-glutamyltransferase), 0.72 for CLivD non-lab (excluding laboratory values), and 0.75 for FIB-4. CLivD lab demonstrated AUC values exceeding 0.85 for liver-related death and severe alcohol-associated liver outcomes. The predictive performance of FIB-4 increased with rising CLivD scores; 10-year FIB-4 AUC values ranged from 0.60 within the minimal-risk CLivD subgroup to 0.81 within the high-risk CLivD subgroup. Moreover, in the minimal-risk CLivD subgroup, the cumulative incidence of LRO varied from 0.05% to 0.3% across low-to-high FIB-4 strata. In contrast, within the high-risk CLivD subgroup, the corresponding incidence ranged from 1.7% to 21.1% (up to 33% in individuals with FIB-4 >3.25). CONCLUSIONS: The CLivD score is a valid tool for LRO risk assessment and improves the predictive performance of FIB-4. The combined use of CLivD and FIB-4 identified a subgroup where 1 in 3 individuals developed LROs within 10 years.
Subject(s)
Liver Cirrhosis , Humans , Female , Male , Middle Aged , Aged , Adult , Risk Assessment/methods , Liver Cirrhosis/diagnosis , Liver Cirrhosis/epidemiology , United Kingdom/epidemiology , Liver Neoplasms/epidemiology , Liver Neoplasms/diagnosis , Severity of Illness Index , Predictive Value of Tests , Cohort Studies , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/diagnosisABSTRACT
BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD)-related fibrosis is heritable, but it is unclear how family history may be used to identify first-degree relatives with advanced fibrosis. We aimed to develop and validate a simple risk score to identify first-degree relatives of probands who have undergone assessment of liver fibrosis who are at higher risk of NAFLD with advanced fibrosis. METHODS: This prospective, cross-sectional, familial study consisted of a derivation cohort from San Diego, California, and a validation cohort from Helsinki, Finland. This study included consecutive adult probands (n = 242) with NAFLD and advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD, with at least 1 of their first-degree relatives. All included probands and first-degree relatives underwent evaluation of liver fibrosis, the majority by magnetic resonance elastography. RESULTS: A total of 396 first-degree relatives (64% male) were included. The median age and body mass index were 47 years (interquartile range, 32-62 y) and 27.6 kg/m2 (interquartile range, 24.1-32.5 kg/m2), respectively. Age (1 point), type 2 diabetes (1 point), obesity (2 points), and proband with NAFLD and advanced fibrosis (2 points) were predictors of advanced fibrosis among first-degree relatives in the derivation cohort (n = 220) and formed the NAFLD Familial Risk Score. The area under the receiver operator characteristic curve of the NAFLD Familial Risk Score for detecting advanced fibrosis was 0.94 in the validation cohort (n = 176). The NAFLD Familial Risk Score outperformed the Fibrosis-4 index in the validation cohort (area under the receiver operator characteristic curve, 0.94 vs 0.70; P = .02). CONCLUSIONS: The NAFLD Familial Risk Score is a simple and accurate clinical tool to identify advanced fibrosis in first-degree relatives. These data may have implications for surveillance in NAFLD.
Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Adult , Humans , Male , Female , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/pathology , Cross-Sectional Studies , Prospective Studies , Risk Factors , Liver Cirrhosis/diagnosis , Liver Cirrhosis/pathology , Genetic Predisposition to Disease , Liver/pathology , BiopsyABSTRACT
AIMS/HYPOTHESIS: Athletes exhibit increased muscle insulin sensitivity, despite increased intramuscular triacylglycerol content. This phenomenon has been coined the 'athlete's paradox' and is poorly understood. Recent findings suggest that the subcellular distribution of sn-1,2-diacylglycerols (DAGs) in the plasma membrane leading to activation of novel protein kinase Cs (PKCs) is a crucial pathway to inducing insulin resistance. Here, we hypothesised that regular aerobic exercise would preserve muscle insulin sensitivity by preventing increases in plasma membrane sn-1,2-DAGs and activation of PKCε and PKCθ despite promoting increases in muscle triacylglycerol content. METHODS: C57BL/6J mice were allocated to three groups (regular chow feeding [RC]; high-fat diet feeding [HFD]; RC feeding and running wheel exercise [RC-EXE]). We used a novel LC-MS/MS/cellular fractionation method to assess DAG stereoisomers in five subcellular compartments (plasma membrane [PM], endoplasmic reticulum, mitochondria, lipid droplets and cytosol) in the skeletal muscle. RESULTS: We found that the HFD group had a greater content of sn-DAGs and ceramides in multiple subcellular compartments compared with the RC mice, which was associated with an increase in PKCε and PKCθ translocation. However, the RC-EXE mice showed, of particular note, a reduction in PM sn-1,2-DAG and ceramide content when compared with HFD mice. Consistent with the PM sn-1,2-DAG-novel PKC hypothesis, we observed an increase in phosphorylation of threonine1150 on the insulin receptor kinase (IRKT1150), and reductions in insulin-stimulated IRKY1162 phosphorylation and IRS-1-associated phosphoinositide 3-kinase activity in HFD compared with RC and RC-EXE mice, which are sites of PKCε and PKCθ action, respectively. CONCLUSIONS/INTERPRETATION: These results demonstrate that lower PKCθ/PKCε activity and sn-1,2-DAG content, especially in the PM compartment, can explain the preserved muscle insulin sensitivity in RC-EXE mice.
Subject(s)
Insulin Resistance , Mice , Animals , Insulin Resistance/physiology , Protein Kinase C-theta/metabolism , Protein Kinase C-epsilon/metabolism , Chromatography, Liquid , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Tandem Mass Spectrometry , Insulin/metabolism , Muscle, Skeletal/metabolism , Triglycerides/metabolism , Ceramides/metabolismABSTRACT
BACKGROUND & AIMS: Genetic variants, abdominal obesity and alcohol use are risk factors for incident liver disease (ILD). We aimed to study whether variants either alone or when aggregated into genetic risk scores (GRSs) associate with ILD, and whether waist-hip ratio (WHR) or alcohol use interacts with this risk. METHODS: Our study included 33 770 persons (mean age 50 years, 47% men) who participated in health-examination surveys (FINRISK 1992-2012 or Health 2000) with data on alcohol use, WHR and 63 genotypes associated with liver disease. Data were linked with national health registers for liver-related outcomes (hospitalizations, malignancies and death). Exclusions were baseline clinical liver disease. Mean follow-up time was 12.2 years. Cox regression analyses between variants and ILD were adjusted for age, sex and BMI. RESULTS: Variants in PNPLA3, IFNL4, TM6SF2, FDFT1, PPP1R3B, SERPINA1 and HSD17B13 were associated with ILD. GRSs calculated from these variants were not associated with WHR or alcohol use, but were exponentially associated with ILD (up to 25-fold higher risk in high versus low score). The risk of ILD in individuals with high GRS and high WHR or alcohol use compared with those with none of these risk factors was increased by up to 90-fold. GRSs provided new prognostic information particularly in individuals with high WHR. CONCLUSIONS: The effect of multiple genetic variants on the risk of ILD is potentiated by abdominal obesity and alcohol use. Simple GRSs may help to identify individuals with adverse lifestyle who are at a particularly high risk of ILD.
Subject(s)
Non-alcoholic Fatty Liver Disease , Obesity, Abdominal , Male , Humans , Middle Aged , Female , Obesity, Abdominal/epidemiology , Obesity, Abdominal/genetics , Risk Factors , Obesity/epidemiology , Obesity/genetics , Non-alcoholic Fatty Liver Disease/genetics , Body Mass Index , InterleukinsABSTRACT
BACKGROUND AND AIMS: The Chronic Liver Disease (CLivD) risk score was recently shown to predict future advanced liver disease in the general population. We here investigated the impact of individual CLivD-score changes over time. METHODS: Participants of both phase 3 (baseline, 1991-1994) and phase 5 (follow-up, 1997-1999) examinations of the Whitehall II study were followed for liver-related outcomes (hospitalization, cancer, death) until December 2019 through linkage with electronic healthcare registers. The CLivD score, its modifiable components (alcohol use, waist-hip ratio [WHR], diabetes, and smoking), and their individual changes were studied. RESULTS: Among 6590 adults (mean age 50 years, 30% women) with a median 21-year follow-up, there were 80 liver outcomes. A rise in the CLivD score between baseline and follow-up examinations significantly increased the risk for liver-related outcomes (adjusted hazard ratio [aHR] 1.62, 95% confidence interval [CI] 1.01-2.60), more so in subjects with baseline intermediate-high CLivD scores (HR 2.4 for a CLivD-change) compared to minimal-low CLivD scores. Adverse changes over time in alcohol use and WHR, and new-onset diabetes also predicted liver outcomes. In contrast to WHR, changes in body weight (kg) showed a U-shaped association with liver outcomes. CONCLUSIONS: A change in the CLivD score over time corresponds to a true change in the risk for liver-related outcomes, suggesting the usefulness of the CLivD score for assessing response to liver-directed lifestyle interventions. Changes in WHR predicted liver outcomes better than changes in body weight or waist circumference, independent of body mass index, supporting the WHR in assessing risk for future liver disease.
Subject(s)
Liver Diseases , Adult , Humans , Female , Middle Aged , Male , Risk Factors , Waist-Hip Ratio , Body Mass Index , Body WeightABSTRACT
Weight loss by ketogenic diet (KD) has gained popularity in management of nonalcoholic fatty liver disease (NAFLD). KD rapidly reverses NAFLD and insulin resistance despite increasing circulating nonesterified fatty acids (NEFA), the main substrate for synthesis of intrahepatic triglycerides (IHTG). To explore the underlying mechanism, we quantified hepatic mitochondrial fluxes and their regulators in humans by using positional isotopomer NMR tracer analysis. Ten overweight/obese subjects received stable isotope infusions of: [D7]glucose, [13C4]ß-hydroxybutyrate and [3-13C]lactate before and after a 6-d KD. IHTG was determined by proton magnetic resonance spectroscopy (1H-MRS). The KD diet decreased IHTG by 31% in the face of a 3% decrease in body weight and decreased hepatic insulin resistance (-58%) despite an increase in NEFA concentrations (+35%). These changes were attributed to increased net hydrolysis of IHTG and partitioning of the resulting fatty acids toward ketogenesis (+232%) due to reductions in serum insulin concentrations (-53%) and hepatic citrate synthase flux (-38%), respectively. The former was attributed to decreased hepatic insulin resistance and the latter to increased hepatic mitochondrial redox state (+167%) and decreased plasma leptin (-45%) and triiodothyronine (-21%) concentrations. These data demonstrate heretofore undescribed adaptations underlying the reversal of NAFLD by KD: That is, markedly altered hepatic mitochondrial fluxes and redox state to promote ketogenesis rather than synthesis of IHTG.
Subject(s)
Diet, Ketogenic/methods , Fatty Liver/diet therapy , Non-alcoholic Fatty Liver Disease/diet therapy , Body Composition , Citrate (si)-Synthase/metabolism , Fatty Acids/metabolism , Fatty Acids, Nonesterified/metabolism , Female , Humans , Insulin/metabolism , Insulin Resistance/physiology , Lipoproteins, VLDL/metabolism , Liver/metabolism , Male , Middle Aged , Mitochondria/metabolism , Obesity/metabolism , Overweight/pathology , Oxidation-Reduction , Pyruvate Carboxylase/metabolism , Triglycerides/metabolismABSTRACT
BACKGROUND & AIMS: Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism. METHODS: In a well-characterized human NAFLD cohort of 105 individuals, we investigated the effects of EC exposure on liver metabolism. We characterized the liver (via biopsy) and circulating metabolomes using 4 mass spectrometry-based analytical platforms, and measured PFAS and other ECs in serum. We subsequently compared these results with an exposure study in a PPARa-humanized mouse model. RESULTS: PFAS exposure appears associated with perturbation of key hepatic metabolic pathways previously found altered in NAFLD, particularly those related to bile acid and lipid metabolism. We identified stronger associations between the liver metabolome, chemical exposure and NAFLD-associated clinical variables (liver fat content, HOMA-IR), in females than males. Specifically, we observed PFAS-associated upregulation of bile acids, triacylglycerols and ceramides, and association between chemical exposure and dysregulated glucose metabolism in females. The murine exposure study further corroborated our findings, vis-à-vis a sex-specific association between PFAS exposure and NAFLD-associated lipid changes. CONCLUSIONS: Females may be more sensitive to the harmful impacts of PFAS. Lipid-related changes subsequent to PFAS exposure may be secondary to the interplay between PFAS and bile acid metabolism. LAY SUMMARY: There is increasing evidence that specific environmental contaminants, such as perfluorinated alkyl substances (PFAS), contribute to the progression of non-alcoholic fatty liver disease (NAFLD). However, it is poorly understood how these chemicals impact human liver metabolism. Here we show that human exposure to PFAS impacts metabolic processes associated with NAFLD, and that the effect is different in females and males.
Subject(s)
Environmental Exposure/adverse effects , Lipid Metabolism/physiology , Non-alcoholic Fatty Liver Disease/complications , Adult , Amino Acids/analysis , Amino Acids/blood , Animals , Cohort Studies , Disease Models, Animal , Environmental Exposure/statistics & numerical data , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/blood , Female , Humans , Lipid Metabolism/immunology , Male , Mice , Middle Aged , Non-alcoholic Fatty Liver Disease/metabolismABSTRACT
BACKGROUND & AIMS: Current screening strategies for chronic liver disease focus on detection of subclinical advanced liver fibrosis but cannot identify those at high future risk of severe liver disease. Our aim was to develop and validate a risk prediction model for incident chronic liver disease in the general population based on widely available factors. METHODS: Multivariable Cox regression analyses were used to develop prediction models for liver-related outcomes with and without laboratory measures (Modellab and Modelnon-lab) in 25,760 individuals aged 40-70 years. Their data were sourced from the Finnish population-based health examination surveys FINRISK 1992-2012 and Health 2000 (derivation cohort). The models were externally validated in the Whitehall II (n = 5,058) and Copenhagen City Heart Study (CCHS) (n = 3,049) cohorts. RESULTS: The absolute rate of incident liver outcomes per 100,000 person-years ranged from 53 to 144. The final prediction model included age, sex, alcohol use (drinks/week), waist-hip ratio, diabetes, and smoking, and Modellab also included gamma-glutamyltransferase values. Internally validated Wolbers' C-statistics were 0.77 for Modellab and 0.75 for Modelnon-lab, while apparent 15-year AUCs were 0.84 (95% CI 0.75-0.93) and 0.82 (95% CI 0.74-0.91). The models identified a small proportion (<2%) of the population with >10% absolute 15-year risk for liver events. Of all liver events, only 10% occurred in participants in the lowest risk category. In the validation cohorts, 15-year AUCs were 0.78 (Modellab) and 0.65 (Modelnon-lab) in the CCHS cohort, and 0.78 (Modelnon-lab) in the Whitehall II cohort. CONCLUSIONS: Based on widely available risk factors, the Chronic Liver Disease (CLivD) score can be used to predict risk of future advanced liver disease in the general population. LAY SUMMARY: Liver disease often progresses silently without symptoms and thus the diagnosis is often delayed until severe complications occur and prognosis becomes poor. In order to identify individuals in the general population who have a high risk of developing severe liver disease in the future, we developed and validated a Chronic Liver Disease (CLivD) risk prediction score, based on age, sex, alcohol use, waist-hip ratio, diabetes, and smoking, with or without measurement of the liver enzyme gamma-glutamyltransferase. The CLivD score can be used as part of health counseling, and for planning further liver investigations and follow-up.
Subject(s)
Liver Cirrhosis , gamma-Glutamyltransferase , Adult , Aged , Cohort Studies , Humans , Middle Aged , Risk Assessment , Risk FactorsABSTRACT
BACKGROUND & AIMS: There is substantial inter-individual variability in the risk of non-alcoholic fatty liver disease (NAFLD). Part of which is explained by insulin resistance (IR) ('MetComp') and part by common modifiers of genetic risk ('GenComp'). We examined how IR on the one hand and genetic risk on the other contribute to the pathogenesis of NAFLD. METHODS: We studied 846 individuals: 492 were obese patients with liver histology and 354 were individuals who underwent intrahepatic triglyceride measurement by proton magnetic resonance spectroscopy. A genetic risk score was calculated using the number of risk alleles in PNPLA3, TM6SF2, MBOAT7, HSD17B13 and MARC1. Substrate concentrations were assessed by serum NMR metabolomics. In subsets of participants, non-esterified fatty acids (NEFAs) and their flux were assessed by D5-glycerol and hyperinsulinemic-euglycemic clamp (n = 41), and hepatic de novo lipogenesis (DNL) was measured by D2O (n = 61). RESULTS: We found that substrate surplus (increased concentrations of 28 serum metabolites including glucose, glycolytic intermediates, and amino acids; increased NEFAs and their flux; increased DNL) characterized the 'MetComp'. In contrast, the 'GenComp' was not accompanied by any substrate excess but was characterized by an increased hepatic mitochondrial redox state, as determined by serum ß-hydroxybutyrate/acetoacetate ratio, and inhibition of hepatic pathways dependent on tricarboxylic acid cycle activity, such as DNL. Serum ß-hydroxybutyrate/acetoacetate ratio correlated strongly with all histological features of NAFLD. IR and hepatic mitochondrial redox state conferred additive increases in histological features of NAFLD. CONCLUSIONS: These data show that the mechanisms underlying 'Metabolic' and 'Genetic' components of NAFLD are fundamentally different. These findings may have implications with respect to the diagnosis and treatment of NAFLD. LAY SUMMARY: The pathogenesis of non-alcoholic fatty liver disease can be explained in part by a metabolic component, including obesity, and in part by a genetic component. Herein, we demonstrate that the mechanisms underlying these components are fundamentally different: the metabolic component is characterized by hepatic oversupply of substrates, such as sugars, lipids and amino acids. In contrast, the genetic component is characterized by impaired hepatic mitochondrial function, making the liver less able to metabolize these substrates.
Subject(s)
Metabolic Diseases/genetics , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/physiopathology , Adult , Biopsy/methods , Biopsy/statistics & numerical data , Female , Finland/epidemiology , Humans , Liver/pathology , Liver/physiopathology , Male , Metabolic Diseases/complications , Metabolic Diseases/epidemiology , Middle Aged , Non-alcoholic Fatty Liver Disease/genetics , Obesity/metabolism , Risk FactorsABSTRACT
BACKGROUND & AIMS: Fatty liver disease (FLD) is a growing epidemic that is expected to be the leading cause of end-stage liver disease within the next decade. Both environmental and genetic factors contribute to the susceptibility of FLD. Several genetic variants contributing to FLD have been identified in exome-wide association studies. However, there is still a missing hereditability indicating that other genetic variants are yet to be discovered. METHODS: To find genes involved in FLD, we first examined the association of missense and nonsense variants with alanine aminotransferase at an exome-wide level in 425,671 participants from the UK Biobank. We then validated genetic variants with liver fat content in 8930 participants in whom liver fat measurement was available, and replicated 2 genetic variants in 3 independent cohorts comprising 2621 individuals with available liver biopsy. RESULTS: We identified 190 genetic variants independently associated with alanine aminotransferase after correcting for multiple testing with Bonferroni method. The majority of these variants were not previously associated with this trait. Among those associated, there was a striking enrichment of genetic variants influencing lipid metabolism. We identified the variants rs2792751 in GPAM/GPAT1, the gene encoding glycerol-3-phosphate acyltransferase, mitochondrial, and rs429358 in APOE, the gene encoding apolipoprotein E, as robustly associated with liver fat content and liver disease after adjusting for multiple testing. Both genes affect lipid metabolism in the liver. CONCLUSIONS: We identified 2 novel genetic variants in GPAM and APOE that are robustly associated with steatosis and liver damage. These findings may help to better elucidate the genetic susceptibility to FLD onset and progression.
Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , Alanine Transaminase/blood , Apolipoproteins E/genetics , Genetic Variation , Non-alcoholic Fatty Liver Disease/genetics , Biomarkers/blood , Europe , Exome , Gene Expression Profiling , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diagnosis , Phenotype , Reproducibility of Results , Risk Assessment , Risk Factors , TranscriptomeABSTRACT
Objective: We recently showed that measurement of the susceptibility of LDL (low-density lipoprotein) to aggregation is an independent predictor of cardiovascular events. We now wished to compare effects of overfeeding different dietary macronutrients on LDL aggregation, proteoglycan-binding of plasma lipoproteins, and on the concentration of oxidized LDL in plasma, 3 in vitro parameters consistent with increased atherogenicity. Approach and Results: The participants (36 subjects; age, 48+/-10 years; body mass index, 30.9+/-6.2 kg/m2) were randomized to consume an extra 1000 kcal/day of either unsaturated fat, saturated fat, or simple sugars (CARB) for 3 weeks. We measured plasma proatherogenic properties (susceptibility of LDL to aggregation, proteoglycan-binding, oxidized LDL) and concentrations and composition of plasma lipoproteins using nuclear magnetic resonance spectroscopy, and in LDL using liquid chromatography mass spectrometry, before and after the overfeeding diets. LDL aggregation increased in the saturated fat but not the other groups. This change was associated with increased sphingolipid and saturated triacylglycerols in LDL and in plasma and reduction of clusterin on LDL particles. Proteoglycan binding of plasma lipoproteins decreased in the unsaturated fat group relative to the baseline diet. Lipoprotein properties remained unchanged in the CARB group. Conclusions: The type of fat during 3 weeks of overfeeding is an important determinant of the characteristics and functional properties of plasma lipoproteins in humans.
Subject(s)
Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Fats, Unsaturated/adverse effects , Lipoproteins, LDL/blood , Proteoglycans/blood , Adult , Chromatography, Liquid , Dietary Fats/administration & dosage , Fats, Unsaturated/administration & dosage , Female , Humans , Male , Middle Aged , Nuclear Magnetic Resonance, Biomolecular , Protein Aggregates , Protein Binding , Spectrometry, Mass, Electrospray Ionization , Tandem Mass SpectrometryABSTRACT
BACKGROUND & AIMS: A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in NAFLD; however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and to characterise its role in the regulation of related metabolic phenotypes through a meta-analysis. METHODS: We performed a meta-analysis of studies with data on the association between rs641738C>T genotype and liver fat, NAFLD histology, and serum alanine aminotransferase (ALT), lipids or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed a random effects meta-analysis using recessive, additive and dominant genetic models. RESULTS: Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI 0.02-0.05], pz = 4.8×10-5) and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05-1.3], pz = 0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI 1.03-1.45], pz = 0.021) in Caucasian adults using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT (pz = 0.002) and lower serum triglycerides (pz = 1.5×10-4). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD. CONCLUSIONS: Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent. LAY SUMMARY: Fatty liver disease is a common condition where fat builds up in the liver, which can cause liver inflammation and scarring (including 'cirrhosis'). It is closely linked to obesity and diabetes, but some genes are also thought to be important. We did this study to see whether one specific change ('variant') in one gene ('MBOAT7') was linked to fatty liver disease. We took data from over 40 published studies and found that this variant near MBOAT7 is linked to more severe fatty liver disease. This means that drugs designed to work on MBOAT7 could be useful for treating fatty liver disease.
Subject(s)
Acyltransferases/genetics , Liver Cirrhosis , Liver/pathology , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease , Alanine Transaminase/blood , Drug Discovery , Genetic Predisposition to Disease , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Polymorphism, Single NucleotideABSTRACT
BACKGROUND: Abnormal glucose metabolism and nonalcoholic fatty liver disease (NAFLD) are common in patients with human immunodeficiency virus (HIV+ patients), but longitudinal data are lacking. We determined the natural course of NAFLD (liver fat [LFAT]) and type 2 diabetes mellitus (T2DM) in HIV+ patients with and without lipodystrophy (LD+ and LD-, respectively) during a 16-year longitudinal study. METHODS: LFAT (by proton magnetic resonance spectroscopy) and clinical characteristics were measured in 41 HIV+ patients at baseline and after 16 years. Liver fibrosis was estimated by measuring liver stiffness using transient elastography (TE) and magnetic resonance elastography (MRE) at 16 years. We also longitudinally studied 28 healthy subjects. RESULTS: During follow-up, the HIV+ patients gained more body fat (8.6% ± 0.7%) than the control patients (4.5% ± 0.6%, P < .001). Features of insulin resistance increased significantly in the HIV+ patients but not the control patients. A significant proportion (20%, P < .01 vs 0% at baseline) of the HIV+ but none of the control patients developed T2DM. LFAT was significantly higher at baseline in the LD+ (4.3 [1.9-11.8]) than the LD- (1.0 [0.5-1.5]; P < .001) HIV+ patients. LFAT remained stable during follow-up in all groups. At follow-up, liver stiffness measured with TE was similar among all HIV, LD+, LD-, and control patients and between the LD+ and LD- patients measured with MRE. Advanced fibrosis by MRE was observed in 3 of LD+ and none of LD- patients. CONCLUSIONS: During 16 years of follow-up, progression of NAFLD is rare compared to development of T2DM in HIV+ patients.
Subject(s)
Diabetes Mellitus, Type 2 , Elasticity Imaging Techniques , HIV Infections , Lipodystrophy , Non-alcoholic Fatty Liver Disease , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Follow-Up Studies , HIV , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/pathology , Humans , Lipodystrophy/pathology , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/pathology , Longitudinal Studies , Magnetic Resonance Imaging , Non-alcoholic Fatty Liver Disease/complicationsABSTRACT
BACKGROUND & AIMS: The I148M variant in PNPLA3 is the major genetic risk factor for non-alcoholic fatty liver disease (NAFLD). The liver is enriched with polyunsaturated triglycerides (PUFA-TGs) in PNPLA3-I148M carriers. Gene expression data indicate that PNPLA3 is liver-specific in humans, but whether it functions in adipose tissue (AT) is unknown. We investigated whether PNPLA3-I148M modifies AT metabolism in human NAFLD. METHODS: Profiling of the AT lipidome and fasting serum non-esterified fatty acid (NEFA) composition was conducted in 125 volunteers (PNPLA3148MM/MI , n = 63; PNPLA3148II , n = 62). AT fatty acid composition was determined in 50 volunteers homozygous for the variant (PNPLA3148MM , n = 25) or lacking the variant (PNPLA3148II , n = 25). Whole-body insulin sensitivity of lipolysis was determined using [2 H5 ]glycerol, and PNPLA3 mRNA and protein levels were measured in subcutaneous AT and liver biopsies in a subset of the volunteers. RESULTS: PUFA-TGs were significantly increased in AT in carriers versus non-carriers of PNPLA3-I148M. The variant did not alter the rate of lipolysis or the composition of fasting serum NEFAs. PNPLA3 mRNA was 33-fold higher in the liver than in AT (P < .0001). In contrast, PNPLA3 protein levels per tissue protein were three-fold higher in AT than the liver (P < .0001) and nine-fold higher when related to whole-body AT and liver tissue masses (P < .0001). CONCLUSIONS: Contrary to previous assumptions, PNPLA3 is highly abundant in AT. PNPLA3-I148M locally remodels AT TGs to become polyunsaturated as it does in the liver, without affecting lipolysis or composition of serum NEFAs. Changes in AT metabolism do not contribute to NAFLD in PNPLA3-I148M carriers.
Subject(s)
Lipase , Non-alcoholic Fatty Liver Disease , Adipose Tissue , Genetic Predisposition to Disease , Humans , Lipase/genetics , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , TriglyceridesABSTRACT
BACKGROUND: Carriers of the transmembrane 6 superfamily member 2 E167K gene variant (TM6SF2EK/KK) have decreased expression of the TM6SF2 gene and increased risk of NAFLD and NASH. Unlike common 'obese/metabolic' NAFLD, these subjects lack hypertriglyceridemia and have lower risk of cardiovascular disease. In animals, phosphatidylcholine (PC) deficiency results in a similar phenotype. PCs surround the core of VLDL consisting of triglycerides (TGs) and cholesteryl-esters (CEs). We determined the effect of the TM6SF2 E167K on these lipids in the human liver and serum and on hepatic gene expression and studied the effect of TM6SF2 knockdown on hepatocyte handling of these lipids. METHODS: Liver biopsies were taken from subjects characterized with respect to the TM6SF2 genotype, serum and liver lipidome, gene expression and histology. In vitro, after TM6SF2 knockdown in HuH-7 cells, we compared incorporation of different fatty acids into TGs, CEs, and PCs. RESULTS: The TM6SF2EK/KK and TM6SF2EE groups had similar age, gender, BMI and HOMA-IR. Liver TGs and CEs were higher and liver PCs lower in the TM6SF2EK/KK than the TM6SF2EE group (p<0.05). Polyunsaturated fatty acids (PUFA) were deficient in liver and serum TGs and liver PCs but hepatic free fatty acids were relatively enriched in PUFA (p<0.05). Incorporation of PUFA into TGs and PCs in TM6SF2 knockdown hepatocytes was decreased (p<0.05). Hepatic expression of TM6SF2 was decreased in variant carriers, and was co-expressed with genes regulated by PUFAs. CONCLUSIONS: Hepatic lipid synthesis from PUFAs is impaired and could contribute to deficiency in PCs and increased intrahepatic TG in TM6SF2 E167K variant carriers.