Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Cell ; 183(4): 1013-1023.e13, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32970990

ABSTRACT

Understanding how potent neutralizing antibodies (NAbs) inhibit SARS-CoV-2 is critical for effective therapeutic development. We previously described BD-368-2, a SARS-CoV-2 NAb with high potency; however, its neutralization mechanism is largely unknown. Here, we report the 3.5-Å cryo-EM structure of BD-368-2/trimeric-spike complex, revealing that BD-368-2 fully blocks ACE2 recognition by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" or "down" conformations. Also, BD-368-2 treats infected adult hamsters at low dosages and at various administering windows, in contrast to placebo hamsters that manifested severe interstitial pneumonia. Moreover, BD-368-2's epitope completely avoids the common binding site of VH3-53/VH3-66 recurrent NAbs, evidenced by tripartite co-crystal structures with RBDs. Pairing BD-368-2 with a potent recurrent NAb neutralizes SARS-CoV-2 pseudovirus at pM level and rescues mutation-induced neutralization escapes. Together, our results rationalized a new RBD epitope that leads to high neutralization potency and demonstrated BD-368-2's therapeutic potential in treating COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antigen-Antibody Reactions , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cricetinae , Cryoelectron Microscopy , Disease Models, Animal , Epitopes/chemistry , Epitopes/immunology , Female , Lung/pathology , Male , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Structure, Quaternary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
2.
Cell ; 182(1): 73-84.e16, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32425270

ABSTRACT

The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here, we report the rapid identification of SARS-CoV-2-neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients. From 8,558 antigen-binding IgG1+ clonotypes, 14 potent neutralizing antibodies were identified, with the most potent one, BD-368-2, exhibiting an IC50 of 1.2 and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respectively. BD-368-2 also displayed strong therapeutic and prophylactic efficacy in SARS-CoV-2-infected hACE2-transgenic mice. Additionally, the 3.8 Å cryo-EM structure of a neutralizing antibody in complex with the spike-ectodomain trimer revealed the antibody's epitope overlaps with the ACE2 binding site. Moreover, we demonstrated that SARS-CoV-2-neutralizing antibodies could be directly selected based on similarities of their predicted CDR3H structures to those of SARS-CoV-neutralizing antibodies. Altogether, we showed that human neutralizing antibodies could be efficiently discovered by high-throughput single B cell sequencing in response to pandemic infectious diseases.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , B-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Single-Cell Analysis , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , COVID-19 , Convalescence , High-Throughput Nucleotide Sequencing , Humans , Mice , Pandemics , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , VDJ Exons
3.
Cell ; 172(4): 857-868.e15, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29336889

ABSTRACT

The mechanism by which the wild-type KRAS allele imparts a growth inhibitory effect to oncogenic KRAS in various cancers, including lung adenocarcinoma (LUAD), is poorly understood. Here, using a genetically inducible model of KRAS loss of heterozygosity (LOH), we show that KRAS dimerization mediates wild-type KRAS-dependent fitness of human and murine KRAS mutant LUAD tumor cells and underlies resistance to MEK inhibition. These effects are abrogated when wild-type KRAS is replaced by KRASD154Q, a mutant that disrupts dimerization at the α4-α5 KRAS dimer interface without changing other fundamental biochemical properties of KRAS, both in vitro and in vivo. Moreover, dimerization has a critical role in the oncogenic activity of mutant KRAS. Our studies provide mechanistic and biological insights into the role of KRAS dimerization and highlight a role for disruption of dimerization as a therapeutic strategy for KRAS mutant cancers.


Subject(s)
Adenocarcinoma of Lung , Enzyme Inhibitors/pharmacology , Lung Neoplasms , MAP Kinase Kinase Kinases/antagonists & inhibitors , Mutation, Missense , Protein Multimerization/drug effects , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/enzymology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Amino Acid Substitution , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Loss of Heterozygosity , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Knockout , Protein Multimerization/genetics , Proto-Oncogene Proteins p21(ras)/genetics
4.
Nature ; 586(7830): 572-577, 2020 10.
Article in English | MEDLINE | ID: mdl-32726802

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory disease called coronavirus disease 2019 (COVID-19), the spread of which has led to a pandemic. An effective preventive vaccine against this virus is urgently needed. As an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike protein to engage with the receptor angiotensin-converting enzyme 2 (ACE2) on host cells1,2. Here we show that a recombinant vaccine that comprises residues 319-545 of the RBD of the spike protein induces a potent functional antibody response in immunized mice, rabbits and non-human primates (Macaca mulatta) as early as 7 or 14 days after the injection of a single vaccine dose. The sera from the immunized animals blocked the binding of the RBD to ACE2, which is expressed on the cell surface, and neutralized infection with a SARS-CoV-2 pseudovirus and live SARS-CoV-2 in vitro. Notably, vaccination also provided protection in non-human primates to an in vivo challenge with SARS-CoV-2. We found increased levels of RBD-specific antibodies in the sera of patients with COVID-19. We show that several immune pathways and CD4 T lymphocytes are involved in the induction of the vaccine antibody response. Our findings highlight the importance of the RBD domain in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective vaccine through the induction of antibodies against the RBD domain.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19 , COVID-19 Vaccines , Humans , Macaca mulatta/immunology , Macaca mulatta/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Models, Molecular , Protein Domains , SARS-CoV-2 , Serum/immunology , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology , Vaccination
5.
Nature ; 583(7818): 830-833, 2020 07.
Article in English | MEDLINE | ID: mdl-32380511

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Coronavirus Infections/virology , Lung/pathology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Transgenes , Angiotensin-Converting Enzyme 2 , Animals , Antigens, Viral/immunology , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , COVID-19 , Coronavirus Infections/immunology , Disease Models, Animal , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Humans , Immunoglobulin G/immunology , Lung/immunology , Lung/virology , Lymphocytes/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Male , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/immunology , Receptors, Complement 3d/genetics , Receptors, Complement 3d/metabolism , SARS-CoV-2 , Virus Replication , Weight Loss
6.
Proc Natl Acad Sci U S A ; 120(18): e2301775120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37094153

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health concern, and effective antiviral reagents are urgently needed. Traditional Chinese medicine theory-driven natural drug research and development (TCMT-NDRD) is a feasible method to address this issue as the traditional Chinese medicine formulae have been shown effective in the treatment of COVID-19. Huashi Baidu decoction (Q-14) is a clinically approved formula for COVID-19 therapy with antiviral and anti-inflammatory effects. Here, an integrative pharmacological strategy was applied to identify the antiviral and anti-inflammatory bioactive compounds from Q-14. Overall, a total of 343 chemical compounds were initially characterized, and 60 prototype compounds in Q-14 were subsequently traced in plasma using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Among the 60 compounds, six compounds (magnolol, glycyrrhisoflavone, licoisoflavone A, emodin, echinatin, and quercetin) were identified showing a dose-dependent inhibition effect on the SARS-CoV-2 infection, including two inhibitors (echinatin and quercetin) of the main protease (Mpro), as well as two inhibitors (glycyrrhisoflavone and licoisoflavone A) of the RNA-dependent RNA polymerase (RdRp). Meanwhile, three anti-inflammatory components, including licochalcone B, echinatin, and glycyrrhisoflavone, were identified in a SARS-CoV-2-infected inflammatory cell model. In addition, glycyrrhisoflavone and licoisoflavone A also displayed strong inhibitory activities against cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4). Crystal structures of PDE4 in complex with glycyrrhisoflavone or licoisoflavone A were determined at resolutions of 1.54 Å and 1.65 Å, respectively, and both compounds bind in the active site of PDE4 with similar interactions. These findings will greatly stimulate the study of TCMT-NDRD against COVID-19.


Subject(s)
COVID-19 , Humans , Antiviral Agents/pharmacology , SARS-CoV-2 , Quercetin/pharmacology , Anti-Inflammatory Agents/pharmacology , Molecular Docking Simulation
7.
BMC Genomics ; 25(1): 658, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956486

ABSTRACT

BACKGROUND: The cashmere goat industry is one of the main pillars of animal husbandry in Inner Mongolia Autonomous Region, and plays an irreplaceable role in local economic development. With the change in feeding methods and environment, the cashmere produced by Inner Mongolia cashmere goats shows a tendency of coarser, and the cashmere yield can not meet the consumption demand of people. However, the genetic basis behind these changes is not fully understood. We measured cashmere traits, including cashmere yield (CY), cashmere diameter (CD), cashmere thickness (CT), and fleece length (FL) traits for four consecutive years, and utilized Genome-wide association study of four cashmere traits in Inner Mongolia cashmere goats was carried out using new genomics tools to infer genomic regions and functional loci associated with cashmere traits and to construct haplotypes that significantly affect cashmere traits. RESULTS: We estimated the genetic parameters of cashmere traits in Inner Mongolia cashmere goats. The heritability of cashmere yield, cashmere diameter, and fleece length traits of Inner Mongolia cashmere goats were 0.229, 0.359, and 0.250, which belonged to the medium heritability traits (0.2 ~ 0.4). The cashmere thickness trait has a low heritability of 0.053. We detected 151 genome-wide significantly associated SNPs with four cashmere traits on different chromosomes, which were very close to the chromosomes of 392 genes (located within the gene or within ± 500 kb). Notch3, BMPR1B, and CCNA2 have direct functional associations with fibroblasts and follicle stem cells, which play important roles in hair follicle growth and development. Based on GO functional annotation and KEGG enrichment analysis, potential candidate genes were associated with pathways of hair follicle genesis and development (Notch, P13K-Akt, TGF-beta, Cell cycle, Wnt, MAPK). We calculated the effective allele number of the Inner Mongolia cashmere goat population to be 1.109-1.998, the dominant genotypes of most SNPs were wild-type, the polymorphic information content of 57 SNPs were low polymorphism (0 < PIC < 0.25), and the polymorphic information content of 79 SNPs were moderate polymorphism (0.25 < PIC < 0.50). We analyzed the association of SNPs with phenotypes and found that the homozygous mutant type of SNP1 and SNP3 was associated with the highest cashmere yield, the heterozygous mutant type of SNP30 was associated with the lowest cashmere thickness, the wild type of SNP76, SNP77, SNP78, SNP80, and SNP81 was associated with the highest cashmere thickness, and the wild type type of SNP137 was associated with the highest fleece length. 21 haplotype blocks and 68 haplotype combinations were constructed. Haplotypes A2A2, B2B2, C2C2, and D4D4 were associated with increased cashmere yield, haplotypes E2E2, F1F1, G5G5, and G1G5 were associated with decreased cashmere fineness, haplotypes H2H2 was associated with increased cashmere thickness, haplotypes I1I1, I1I2, J1J4, L5L3, N3N2, N3N3, O2O1, P2P2, and Q3Q3 were associated with increased cashmere length. We verified the polymorphism of 8 SNPs by KASP, and found that chr7_g.102631194A > G, chr10_g.82715068 T > C, chr1_g.124483769C > T, chr24_g.12811352C > T, chr6_g.114111249A > G, and chr6_g.115606026 T > C were significantly genotyped in verified populations (P < 0.05). CONCLUSIONS: In conclusion, the genetic effect of single SNP on phenotypes is small, and SNPs are more inclined to be inherited as a whole. By constructing haplotypes from SNPs that are significantly associated with cashmere traits, it will help to reveal the complex and potential causal variations in cashmere traits of Inner Mongolia cashmere goats. This will be a valuable resource for genomics and breeding of the cashmere goat.


Subject(s)
Genome-Wide Association Study , Goats , Haplotypes , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Goats/genetics , Goats/growth & development , Phenotype , China , Quantitative Trait, Heritable
8.
Int Arch Allergy Immunol ; 185(2): 182-189, 2024.
Article in English | MEDLINE | ID: mdl-37980884

ABSTRACT

INTRODUCTION: Comorbidities, such as gastroesophageal reflux disease (GERD), are common in patients with rhinosinusitis (RS). However, the link between RS and GERD has not been fully understood. This study aimed to investigate the causal relationship between GERD and acute (ARS) or chronic RS (CRS), providing references for the pathogenesis and management of RS. METHODS: The data were obtained from the Integrative Epidemiology Unit Open GWAS project and FinnGen. A total of 972,838 individuals were included. The inverse variance-weighted (IVW) method was applied to obtain the primary results of the study. Weighted median, MR-Egger, and mode-based methods were used to determine the robustness of the results. Cochran's Q statistic and MR-Egger method were applied to detect heterogeneity and pleiotrophy in instrumental variables (IVs). Other sensitivity analyses included MR-PRESSO and leave-one-out analysis. RESULTS: The MR study showed that GERD was associated with an increased risk of CRS (OR: 1.36, 95% CI: 1.18-1.57, p < 0.001). The results of other analysis methods were broadly consistent with the IVW estimate. No heterogeneity was detected by Cochran's Q test (p = 0.061) and MR-PRESSO (p = 0.074). No horizontal pleiotropy was shown in IVs (p = 0.700). GERD was also associated with an increased risk of ARS (OR: 1.31, 95% CI: 1.17-1.48, p < 0.001). Some analytical results were inconsistent with the IVW estimate. No heterogeneity and pleiotropy were observed. There was no sufficient evidence for a reverse causal effect of RS on GERD. CONCLUSION: Our study supported that GERD promoted the risk of CRS and may be a potential risk factor for ARS. This provides additional support for further investigation into the mechanisms of GERD on RS.


Subject(s)
Gastroesophageal Reflux , Rhinosinusitis , Humans , Mendelian Randomization Analysis , Gastroesophageal Reflux/complications , Gastroesophageal Reflux/epidemiology , Risk Factors , Genome-Wide Association Study
9.
Pharmacol Res ; 202: 107126, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432446

ABSTRACT

PD-1 blockade therapy has made great breakthroughs in treatment of multiple solid tumors. However, patients with microsatellite-stable (MSS) colorectal cancer (CRC) respond poorly to anti-PD-1 immunotherapy. Although CRC patients with microstatellite instability (MSI) or microsatellite instability-high (MSI-H) can benefit from PD-1 blockade therapy, there are still some problems such as tumor recurrence. Tumor-associated macrophages (TAMs), most abundant immune components in tumor microenvironment (TME), largely limit the therapeutic efficacy of anti-PD-1 against CRC. The CSF1/CSF1R pathway plays a key role in regulating macrophage polarization, and blocking CSF1R signaling transduction may be a potential strategy to effectively reprogram macrophages and remodel TME. Here, we found that increasing expression of CSF1R in macrophages predicted poor prognosis in CRC cohort. Furthermore, we discovered a novel potent CSF1R inhibitor, PXB17, which significantly reprogramed M2 macrophages to M1 phenotype. Mechanically, PXB17 significantly blocked activation of PI3K/AKT/mTORC1 signaling, resulting in inhibition of cholesterol biosynthesis. Results from 3D co-culture system suggested that PXB17-repolarized macrophages could induce infiltration of CD8+ T lymphocytes in tumors and improve the immunosuppressive microenvironment. In vivo, PXB17 significantly halted CRC growth, with a stronger effect than PLX3397. In particular, PXB17 potently enhanced therapeutic activity of PD-1 mAb in CT-26 (MSS) model and prevented tumor recurrence in MC-38 (MSI-H) model by promoting formation of long-term memory immunity. Our study opens a new avenue for CSF1R in tumor innate and adaptive anti-tumor immunomodulatory activity and suggests that PXB17 is a promising immunotherapy molecule for enhancing the efficacy of PD-1 mAb or reducing tumor recurrence of CRC.


Subject(s)
Colorectal Neoplasms , Tumor-Associated Macrophages , Humans , Programmed Cell Death 1 Receptor , Phosphatidylinositol 3-Kinases , Neoplasm Recurrence, Local , Colorectal Neoplasms/genetics , Tumor Microenvironment
10.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38255985

ABSTRACT

The development of the ovarian antral follicle is a complex, highly regulated process. Oocytes orchestrate and coordinate the development of mammalian ovarian follicles, and the rate of follicular development is governed by a developmental program intrinsic to the oocyte. Characterizing oocyte signatures during this dynamic process is critical for understanding oocyte maturation and follicular development. Although the transcriptional signature of sheep oocytes matured in vitro and preovulatory oocytes have been previously described, the transcriptional changes of oocytes in antral follicles have not. Here, we used single-cell transcriptomics (SmartSeq2) to characterize sheep oocytes from small, medium, and large antral follicles. We characterized the transcriptomic landscape of sheep oocytes during antral follicle development, identifying unique features in the transcriptional atlas, stage-specific molecular signatures, oocyte-secreted factors, and transcription factor networks. Notably, we identified the specific expression of 222 genes in the LO, 8 and 6 genes that were stage-specific in the MO and SO, respectively. We also elucidated signaling pathways in each antral follicle size that may reflect oocyte quality and in vitro maturation competency. Additionally, we discovered key biological processes that drive the transition from small to large antral follicles, revealing hub genes involved in follicle recruitment and selection. Thus, our work provides a comprehensive characterization of the single-oocyte transcriptome, filling a gap in the mapping of the molecular landscape of sheep oogenesis. We also provide key insights into the transcriptional regulation of the critical sizes of antral follicular development, which is essential for understanding how the oocyte orchestrates follicular development.


Subject(s)
Carbamates , Oocytes , Organometallic Compounds , Single-Cell Gene Expression Analysis , Female , Animals , Sheep , Ovarian Follicle , Oogenesis/genetics , Ovary , Mammals
11.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893472

ABSTRACT

Polymer microspheres with temperature and salt resistance were synthesized using the anti-suspension polymerization method, incorporating the functional monomers AMPS, AM, and AA. To enhance their self-gelling properties, the microspheres were designed with a core-shell structure. The shell is composed of a polymeric surfactant, fatty alcohol polyoxyethylene ether methacrylate (AEOMA), which serves as a thermosensitive crosslinking agent, enabling self-crosslinking upon shell decomposition, addressing compatibility with reservoir pore throat dimensions. Comprehensive characterizations including infrared spectroscopy, scanning electron microscopy, optical microscopy, and laser particle size analysis were conducted. The microspheres exhibited successful synthesis, a nanoscale size, and regular spherical morphology. They demonstrated excellent temperature and salt resistance, making them suitable for high-temperature, high-salinity reservoir profile control. With a stable three-dimensional network structure, the microspheres displayed good expansion behavior due to hydrophilic groups along the polymer chains, resulting in favorable water affinity. Even after aging, the microspheres maintained their gelling state with a distinct and stable microscopic network skeleton. They exhibited superior plugging performance in low-permeability reservoirs, while effectively improving water absorption profiles in reservoirs with permeability contrasts of 10 to 80, thereby enhancing oil recovery.

12.
Org Biomol Chem ; 21(28): 5775-5783, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37401568

ABSTRACT

Herein, an N-heterocyclic carbene (NHC) catalyzed formal [3 + 3] annulation of δ-acetoxy allenoates with 1C,3O-bisnucleophiles for the construction of 4H-(fused)pyrans has been developed. This protocol provides a facile method to synthesize highly functionalized 4H-pyrans and has a broad substrate scope (30 examples, up to 77% yield).

13.
Nanotechnology ; 34(17)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36706449

ABSTRACT

Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) with high brightness, small sizes, good hydro-dispersivity, and intrinsic surface-functional groups are desirable in biological applications. In this work, Cr3+-doped zinc gallogermanates Zn1+xGa2-2xGexO4:Cr (ZGGC) PLNPs were hydrothermally synthesized via 3-aminopropyltriethoxysilane (APTES) as an additive, or APTES and cetyltrimethylammonium bromide (CTAB) as two co-additives. Addition of APTES not only dramatically enhances the 696 nm NIR luminescence intensity, but also obviously decreases the particle size and introduces amino groups. In particular, thex= 0.1 series ZGGC (ZGGC0.1) with the addition of n moles equivalent APTES (ZGGC0.1-nA) had smaller particle sizes than thex= 0.2 counterpart (ZGGC0.2-nA). The NIR afterglow intensities increased with the APTES introduction. The ZGGC0.2-2.5A sample (also named as ZGGC, Si, -NH2) exhibited maximum luminescence intensities both in solid and aqueous states. With APTES, Si atom is doped and -NH2groups are modified, the trap depth and density become larger, and the afterglow intensities and decay time are significantly enhanced. More notably, co-addition of CTAB (ZGGC0.2-2.5A-C) (also named as ZGGC, Si, -NH2') further enhances hydro-dispersivity and luminescence intensity, decreases particle sizes, and results in more prominent amino groups. The trap density is drastically higher than that without CTAB (i.e. ZGGC0.2-2.5A). Change of Cr3+microenvironment in the crystal and more defects introduction contribute to the enhanced brightness. As expected, the ZGGC,Si,-NH2' PLNPs possess excellent biocompatibility, deep tissue penetration and distinguished bioimaging properties, and rechargeability with orange LED light. The ZGGC,Si,-NH2' PLNPs should provide to be an excellent nanomaterial for various functionalization and bioimaging applications.


Subject(s)
Luminescence , Nanoparticles , Cetrimonium , Nanoparticles/chemistry , Particle Size
14.
Mol Biol Rep ; 50(11): 9007-9017, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716921

ABSTRACT

BACKGROUND: Castration-resistant prostate cancer (CRPC) is a terminal type of advanced cancer resistant to androgen deprivation therapy (ADT). Due to the poor therapeutic response of CRPC, novel treatment strategies are urgently required. This study aimed to clarify the regulatory roles of the SOX2/Notch axis in CRPC. METHODS: For the evaluation of the SOX2, Notch, and Hey1 expression in the prostate cancer (PCa) and CRPC tissues, we conducted immunohistochemistry (IHC) analyses. RT-PCR, Western blotting, and immunofluorescence were performed to evaluate SOX2 and Notch expression in enzalutamide-resistant LNCaP cells (Enza-R). CCK-8, Transwell, Wound healing, and Western blotting assays were used to assess the viability, invasion, migration, cell cycle, and drug-resistant in Enza-R cells. RESULTS: Compared to the PCa tissues, CRPC tissues exhibited significantly elevated SOX2, Notch1, and Hey1 expression. SOX2-positive patients were more likely to develop bone metastases than SOX2-negative ones. Significant activation of the signaling associated with SOX2 and Notch was detected in Enza-R cells. The suppression of SOX2 clearly inactivated the Notch signaling and inhibited malignant behaviors, including proliferation, invasion, migration, and drug resistance in Enza-R cells. Theγsecretase inhibitor, GSI-IX, abrogated the enzalutamide resistance by inhibiting Notch signaling in vitro in vitro. Also, GSI-IX alone had a significant anti-tumor effect in Enza-R cells. CONCLUSION: We demonstrated that SOX2/Notch signaling was responsible for Enzalutamide resistance in CRPC. Targeting SOX2/Notch signaling might represent a new choice for the treatment and therapy of CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Androgen Antagonists/therapeutic use , Benzamides/pharmacology , Castration , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , SOXB1 Transcription Factors
15.
Bioorg Chem ; 141: 106894, 2023 12.
Article in English | MEDLINE | ID: mdl-37776682

ABSTRACT

Utilizing artificial intelligence (AI) in drug design represents an advanced approach for identifying targets and developing new drugs. Integrating AI techniques significantly reduces the workload involved in drug development and enhances the efficiency of early-stage drug discovery. This review aims to present a comprehensive overview of the utilization of AI methods in the field of small drug design, with a specific focus on four key areas: protein structure prediction, molecular virtual screening, molecular design, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction. Additionally, the role and limitations of AI in drug development are explored, and the impact of AI on decision-making processes is studied. It is important to note that while AI can bring numerous benefits to the early stage of drug development, the direction and quality of decision-making should still be emphasized, as AI should be considered as a tool rather than a decisive factor.


Subject(s)
Artificial Intelligence , Drug Discovery , Drug Discovery/methods , Drug Design , Drug Development
16.
Int J Clin Pract ; 2023: 6396576, 2023.
Article in English | MEDLINE | ID: mdl-37808625

ABSTRACT

Background: Rhabdomyolysis (RM) refers to a clinical syndrome in which muscle cells are damaged by various causes and the clinical manifestations are mainly muscle pain, weakness, and dark urine. Acute kidney injury (AKI) is a serious complication of RM with complex mechanisms and high mortality. Therefore, understanding the pathogenesis and clinical manifestations, early diagnosis and treatment of RM are crucial to improve its prognosis. Method: Analysis of medical records of RM patients admitted to Tianjin Medical University General Hospital from October 2019 to October 2022. Statistical software SPSS 25.0 was used to analyze the data. The risk factors of RM-complicated AKI were analyzed by logistic regression. The receiver operating characteristic (ROC) curve was plotted, the area under the curve (AUC) was calculated, and the optimal cutoff value was determined by the Youden index. P < 0.05 indicates a statistically significant difference between the groups. Result: Among the 71 patients, the median age of the patients was 53.0 (30.0, 71.0) years and was 2.5 times higher in men than in women. Infection was the most common etiology. History of alcohol consumption, CK, and creatinine were independent influencing factors for AKI due to RM. Logistic regression analysis showed that CK combined with creatinine had a better predictive value than the single index. Conclusion: Our study revealed the clinical and laboratory characteristics of RM in the population attending the Tianjin Medical University General Hospital in the last three years, which is a reference for future multicenter, prospective studies.


Subject(s)
Acute Kidney Injury , Rhabdomyolysis , Female , Humans , Male , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Creatinine , Prognosis , Prospective Studies , Retrospective Studies , Rhabdomyolysis/epidemiology , Rhabdomyolysis/etiology , Rhabdomyolysis/therapy , ROC Curve , Adult , Middle Aged , Aged
17.
J Enzyme Inhib Med Chem ; 38(1): 2225135, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37325874

ABSTRACT

In this study, based on the effect of compounds on the activation of NF-κB and NO release, compound 51 was discovered as the best one with NO release inhibition IC50 value was 3.1 ± 1.1 µM and NF-κB activity inhibition IC50 value was 172.2 ± 11.4 nM. Compound 51 could inhibit the activation of NF-κB through suppressing phosphorylation and nuclear translocation of NF-κB, and suppress LPS-induced inflammatory response in RAW264.7 cells, such as the over-expression of TNF-α and IL-6, which were target genes of NF-κB. This compound also showed preferable anti-inflammatory activity in vivo, including alleviating significantly gastric distention and splenomegaly caused by LPS stimulation, reducing the level of oxidative stress induced by LPS, and inhibiting the expression of IL-6 and TNF-α in serum. Thus, it's reasonable to consider that this compound is a promising small molecule with anti-inflammatory effect for inhibiting the NF-κB signalling pathway.


Subject(s)
NF-kappa B , Tumor Necrosis Factor-alpha , Humans , NF-kappa B/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism
18.
Molecules ; 28(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37513321

ABSTRACT

Liver fibrosis resulting from chronic liver damage is becoming one of the major threats to health worldwide. Active saponin constituents isolated from Gynostemma pentaphyllum were found to possess a protective effect in liver diseases. Here, we obtained a naturally abundant gypenoside, XLVI, and evaluated its liver protection activity in both animal and cellular models. The results showed that it ameliorated acute and chronic liver injuries and lightened the process of fibrogenesis in vivo. XLVI can inhibit TGF-ß-induced activation of hepatic stellate cells and ECM deposition in vitro. The underlying mechanism study verified that it upregulated the protein expression of protein phosphatase 2C alpha and strengthened the vitality of the phosphatase together with a PP2Cα agonist gypenoside NPLC0393. These results shed new light on the molecular mechanisms and the potential therapeutic function of the traditional herb Gynostemma pentaphyllum in the treatment of liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Liver Diseases , Mice , Animals , Gynostemma , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Diseases/metabolism , Extracellular Matrix
19.
Cancer Cell Int ; 22(1): 369, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36424596

ABSTRACT

Renal cell carcinoma (RCC) is one of the most common malignant tumors with a poor response to radiotherapy and chemotherapy. The advent of molecular targeted drugs has initiated great breakthroughs in the treatment of RCC. However, drug resistance to targeted drugs has become an urgent problem. Various studies across the decades have confirmed the involvement of circular RNAs (circRNAs) in multiple pathophysiological processes and its abnormal expression in many malignant tumors. This review speculated that circRNAs can provide a new solution to drug resistance in RCC and perhaps be used as essential markers for the early diagnosis and prognosis of RCC. Through the analysis and discussion of relevant recent research, this review explored the relationship of circRNAs to and their regulatory mechanisms in drug resistance in RCC. The results indicate an association between the expression of circRNAs and the development of RCC, as well as the involvement of circRNAs in drug resistance in RCC.

20.
Virol J ; 19(1): 212, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494863

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus and its variants, has posed unprecedented challenges worldwide. Existing vaccines have limited effectiveness against SARS-CoV-2 variants. Therefore, novel vaccines to match mutated viral lineages by providing long-term protective immunity are urgently needed. We designed a recombinant adeno-associated virus 5 (rAAV5)-based vaccine (rAAV-COVID-19) by using the SARS-CoV-2 spike protein receptor binding domain (RBD-plus) sequence with both single-stranded (ssAAV5) and self-complementary (scAAV5) delivery vectors and found that it provides excellent protection from SARS-CoV-2 infection. A single-dose vaccination in mice induced a robust immune response; induced neutralizing antibody (NA) titers were maintained at a peak level of over 1:1024 more than a year post-injection and were accompanied by functional T-cell responses. Importantly, both ssAAV- and scAAV-based RBD-plus vaccines produced high levels of serum NAs against the circulating SARS-CoV-2 variants, including Alpha, Beta, Gamma and Delta. A SARS-CoV-2 virus challenge showed that the ssAAV5-RBD-plus vaccine protected both young and old mice from SARS-CoV-2 infection in the upper and lower respiratory tracts. Whole genome sequencing demonstrated that AAV vector DNA sequences were not found in the genomes of vaccinated mice one year after vaccination, demonstrating vaccine safety. These results suggest that the rAAV5-based vaccine is safe and effective against SARS-CoV-2 and several variants as it provides long-term protective immunity. This novel vaccine has a significant potential for development into a human prophylactic vaccination to help end the global pandemic.


Subject(s)
COVID-19 , Parvovirinae , Animals , Humans , Mice , SARS-CoV-2/genetics , COVID-19/prevention & control , Pandemics , Vaccines, Synthetic/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL