Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Nucleic Acids Res ; 50(D1): D934-D942, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34634807

ABSTRACT

Viral infectious diseases are a devastating and continuing threat to human and animal health. Receptor binding is the key step for viral entry into host cells. Therefore, recognizing viral receptors is fundamental for understanding the potential tissue tropism or host range of these pathogens. The rapid advancement of single-cell RNA sequencing (scRNA-seq) technology has paved the way for studying the expression of viral receptors in different tissues of animal species at single-cell resolution, resulting in huge scRNA-seq datasets. However, effectively integrating or sharing these datasets among the research community is challenging, especially for laboratory scientists. In this study, we manually curated up-to-date datasets generated in animal scRNA-seq studies, analyzed them using a unified processing pipeline, and comprehensively annotated 107 viral receptors in 142 viruses and obtained accurate expression signatures in 2 100 962 cells from 47 animal species. Thus, the VThunter database provides a user-friendly interface for the research community to explore the expression signatures of viral receptors. VThunter offers an informative and convenient resource for scientists to better understand the interactions between viral receptors and animal viruses and to assess viral pathogenesis and transmission in species. Database URL: https://db.cngb.org/VThunter/.


Subject(s)
Databases, Factual , Genome, Viral , Host-Pathogen Interactions/genetics , Receptors, Virus/genetics , Software , Virus Diseases/genetics , Viruses/genetics , Animals , Binding Sites , Datasets as Topic , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Internet , Molecular Sequence Annotation , Protein Binding , Receptors, Virus/classification , Receptors, Virus/metabolism , Signal Transduction , Single-Cell Analysis , Virus Diseases/metabolism , Virus Diseases/transmission , Virus Diseases/virology , Viruses/classification , Viruses/metabolism , Viruses/pathogenicity
2.
Environ Microbiol ; 25(4): 853-866, 2023 04.
Article in English | MEDLINE | ID: mdl-36537150

ABSTRACT

Sooty moulds are a widespread group of saprophytic ascomycetes that obtain nutrients from honeydew excreted by sap-feeding insects and coat plant tissue with mycelia. Research on sooty moulds has focused on fungal morphology and phylogeny-based taxonomy, but little research has been conducted on the community structure. In this study, the PacBio sequencing platform was used to systematically analyse the fungal and bacterial diversity of the sooty mould community on camphor trees at two sampling sites. Six dominant sooty mould genera were identified, of which three genera of Dothideomycetes were enriched only in diseased samples, while three genera of Eurotiomycetes were present in both healthy and diseased samples. Bacterial diversity and co-occurrence network analysis indicated that the sooty moulds had an effect on the leaf surface bacterial communities but not on the endophyte communities. There was a close correlation between the six dominant pathogenic groups and bacteria in the soot layer. Transcriptomic data from Cinnamomum camphora samples showed that the sooty moulds that did not penetrate plant cells not only affected plant photosynthesis but also induced plant defence responses. This study systematically studied the microbial community of sooty moulds, indicating the close relationship between sooty moulds and the bacterial communities.


Subject(s)
Fungi , Microbiota , Fungi/genetics , Phylogeny , Bacteria/genetics , Microbiota/genetics , Plant Leaves
3.
Int J Mol Sci ; 22(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34074049

ABSTRACT

The vegetative phase transition is a prerequisite for flowering in angiosperm plants. Mulberry miR156 has been confirmed to be a crucial factor in the vegetative phase transition in Arabidopsis thaliana. The over-expression of miR156 in transgenic Populus × canadensis dramatically prolongs the juvenile phase. Here, we find that the expression of mno-miR156 decreases with age in all tissues in mulberry, which led us to study the hierarchical action of miR156 in mulberry. Utilizing degradome sequencing and dual-luciferase reporter assays, nine MnSPLs were shown to be directly regulated by miR156. The results of yeast one-hybrid and dual-luciferase reporter assays also revealed that six MnSPLs could recognize the promoter sequences of mno-miR172 and activate its expression. Our results demonstrate that mno-miR156 performs its role by repressing MnSPL/mno-miR172 pathway expression in mulberry. This work uncovered a miR156/SPLs/miR172 regulation pathway in the development of mulberry and fills a gap in our knowledge about the molecular mechanism of vegetative phase transition in perennial woody plants.


Subject(s)
Aging/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , MicroRNAs/metabolism , Morus/metabolism , Plant Proteins/metabolism , Aging/genetics , Arabidopsis/genetics , Computational Biology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Hydrastis/genetics , Hydrastis/metabolism , MicroRNAs/genetics , Morus/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Populus/genetics , Populus/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation
4.
Biosci Biotechnol Biochem ; 84(7): 1460-1466, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32195627

ABSTRACT

Chitooligosaccharides (COS) are derived from chitosan, which can be used as nutraceuticals and functional foods. Because of their various biological activities, COS are widely used in the food, medicine, agriculture, and other fields. COS were prepared by chitosanase  from Pseudoalteromonas sp. SY39 and their anti-obesity activity was researched in mice in this study. The effects of hydrolysis time, temperature, the ratio of enzyme to chitosan, and pH on the productivity of COS were discussed. Preparation process of COS was established in a 5-L fermenter. COS were characterized and their anti-obesity activity was studied in animal experiments. The results showed that COS could effectively reduce serum lipid levels and obesity in mice, and have a good anti-obesity activity. The preparation technology and remarkable anti-obesity activity of COS further expand their applications in the food and pharmaceutical industries.


Subject(s)
Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/chemical synthesis , Chitin/analogs & derivatives , Chitosan/chemistry , Glycoside Hydrolases/chemistry , Obesity/drug therapy , Pseudoalteromonas/enzymology , Animals , Anti-Obesity Agents/pharmacology , Chitin/administration & dosage , Chitin/chemical synthesis , Chitin/pharmacology , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids, Nonesterified/blood , Hydrogen-Ion Concentration , Hydrolysis , Male , Mice , Obesity/blood , Obesity/etiology , Oligosaccharides , Temperature , Triglycerides/blood
5.
Proc Natl Acad Sci U S A ; 113(37): E5434-43, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27578867

ABSTRACT

Rapid clearance of adoptively transferred Cd47-null (Cd47(-/-)) cells in congeneic WT mice suggests a critical self-recognition mechanism, in which CD47 is the ubiquitous marker of self, and its interaction with macrophage signal regulatory protein α (SIRPα) triggers inhibitory signaling through SIRPα cytoplasmic immunoreceptor tyrosine-based inhibition motifs and tyrosine phosphatase SHP-1/2. However, instead of displaying self-destruction phenotypes, Cd47(-/-) mice manifest no, or only mild, macrophage phagocytosis toward self-cells except under the nonobese diabetic background. Studying our recently established Sirpα-KO (Sirpα(-/-)) mice, as well as Cd47(-/-) mice, we reveal additional activation and inhibitory mechanisms besides the CD47-SIRPα axis dominantly controlling macrophage behavior. Sirpα(-/-) mice and Cd47(-/-) mice, although being normally healthy, develop severe anemia and splenomegaly under chronic colitis, peritonitis, cytokine treatments, and CFA-/LPS-induced inflammation, owing to splenic macrophages phagocytizing self-red blood cells. Ex vivo phagocytosis assays confirmed general inactivity of macrophages from Sirpα(-/-) or Cd47(-/-) mice toward healthy self-cells, whereas they aggressively attack toward bacteria, zymosan, apoptotic, and immune complex-bound cells; however, treating these macrophages with IL-17, LPS, IL-6, IL-1ß, and TNFα, but not IFNγ, dramatically initiates potent phagocytosis toward self-cells, for which only the Cd47-Sirpα interaction restrains. Even for macrophages from WT mice, phagocytosis toward Cd47(-/-) cells does not occur without phagocytic activation. Mechanistic studies suggest a PKC-Syk-mediated signaling pathway, to which IL-10 conversely inhibits, is required for activating macrophage self-targeting, followed by phagocytosis independent of calreticulin Moreover, we identified spleen red pulp to be one specific tissue that provides stimuli constantly activating macrophage phagocytosis albeit lacking in Cd47(-/-) or Sirpα(-/-) mice.


Subject(s)
CD47 Antigen/genetics , Inflammation/genetics , Interleukin-10/genetics , Receptors, Immunologic/genetics , Animals , Cytokines/biosynthesis , Cytokines/genetics , Endocytosis/genetics , Humans , Inflammation/pathology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Phagocytosis/genetics , Protein Kinase C/genetics , Signal Transduction/genetics
6.
Plant Cell Rep ; 37(8): 1101-1112, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29846768

ABSTRACT

KEY MESSAGE: Two LysM-containing proteins, namely, MmLYP1 and MmLYK2, were identified in mulberry. These proteins might be involved in chitin signaling. The LysM1 of MmLYK2 is critical for their interactions. Chitin is a major component of fungal cell walls and acts as an elicitor in plant innate immunity. Lysin motif (LysM)-containing proteins are essential for chitin recognition. However, related studies have been rarely reported in woody plants. In this study, in mulberry, the expression of a LysM-containing protein, MmLYP1, was significantly up-regulated after treatment with chitin and pathogenic fungi. In addition, MmLYP1 has an affinity for insoluble chitin polymers. Thus, MmLYP1 might function in chitin signaling. Since MmLYP1 lacks an intracellular domain, additional protein kinases are required for this signaling. An LysM-containing kinase, MmLYK2, was then identified. Expression of the MmLYK2 did not change significantly after chitin treatment, and the affinity of MmLYK2 for insoluble chitin was not high. The structure of MmLYP1 is similar to that of the chitin elicitor-binding proteins in rice and Arabidopsis. However, MmLYK2 has two LysM motifs, while the chitin elicitor receptor kinase 1 proteins in rice and Arabidopsis have one and three LysM motifs, respectively. The LysM1 of MmLYK2 interacted with all four LysM motifs in MmLYP1 and MmLYK2 in yeast. The chimera lacking the LysM1 of MmLYK2 did not interact with MmLYP1 and MmLYK2 in yeast and Nicotiana benthamiana cells. The LysM1 in MmLYK2 is the key motif in the interaction between MmLYP1 and MmLYK2, which may be involved in chitin signaling.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chitin/metabolism , Amino Acid Motifs/genetics , Amino Acid Motifs/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Protein Binding , Signal Transduction/genetics , Signal Transduction/physiology
7.
J Immunoassay Immunochem ; 39(4): 351-364, 2018.
Article in English | MEDLINE | ID: mdl-30204067

ABSTRACT

Modern immunoassay methods and techniques are important tools in labs of basic biology, biomedicine, clinical medicine, and even in home tests, such as pregnant test, many of which utilize antibody-antigen binding mechanism as their foundational principle in common. Meanwhile, compared with polyclonal anitbody, monoclonal antibody shows obvious advantages in their application of modern immunoassays. Furthermore, the progress of other technologies have also promoted the development of modern immunoassays robustly, and widely made it extend into more research and industry fields. In this review, we will first look back to the discovery of antibody-antigen binding mechanism, antibody structure, and the development of monoclonal antibody technology. Then, a brief description of different classical immunoassays will be introduced, such as enzyme-linked immunosorbent assay, flow cytometry, Immunoprecipitation, and lateral flow immunoassays, through of which, we hope a brief and clear picture can be displayed in front of readers. ABBREVIATIONS: ELISA: Enzyme-Linked Immunosorbent Assay; WB: western blot; Mab: monoclonal antibody; IP: immunoprecipitation; LFIAs: lateral flow immunoassays.


Subject(s)
Antibodies, Monoclonal/immunology , Immunoassay , Animals , Antibodies, Monoclonal/chemistry , Antigen-Antibody Reactions , Humans , Immunoassay/methods
8.
J Immunol ; 195(2): 661-71, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26085683

ABSTRACT

CD47, a self recognition marker expressed on tissue cells, interacts with immunoreceptor SIRPα expressed on the surface of macrophages to initiate inhibitory signaling that prevents macrophage phagocytosis of healthy host cells. Previous studies suggested that cells may lose surface CD47 during aging or apoptosis to enable phagocytic clearance. In the current study, we demonstrate that the level of cell surface CD47 is not decreased, but the distribution pattern of CD47 is altered, during apoptosis. On nonapoptotic cells, CD47 molecules are clustered in lipid rafts forming punctates on the surface, whereas on apoptotic cells, CD47 molecules are diffused on the cell surface following the disassembly of lipid rafts. We show that clustering of CD47 in lipid rafts provides a high binding avidity for cell surface CD47 to ligate macrophage SIRPα, which also presents as clusters, and elicits SIRPα-mediated inhibitory signaling that prevents phagocytosis. In contrast, dispersed CD47 on the apoptotic cell surface is associated with a significant reduction in the binding avidity to SIRPα and a failure to trigger SIRPα signal transduction. Disruption of plasma membrane lipid rafts with methyl-ß-cyclodextrin diffuses CD47 clusters, leading to a decrease in the cell binding avidity to SIRPα and a concomitant increase in cells being engulfed by macrophages. Taken together, our study reveals that CD47 normally is clustered in lipid rafts on nonapoptotic cells but is diffused in the plasma membrane when apoptosis occurs; this transformation of CD47 greatly reduces the strength of CD47-SIRPα engagement, resulting in the phagocytosis of apoptotic cells.


Subject(s)
Antigens, Differentiation/immunology , Apoptosis/radiation effects , CD47 Antigen/immunology , Epithelial Cells/radiation effects , Macrophages/radiation effects , Receptors, Immunologic/immunology , Animals , Antigens, Differentiation/genetics , Apoptosis/drug effects , Binding Sites , CD47 Antigen/chemistry , CD47 Antigen/genetics , Cell Line, Tumor , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/immunology , Fibroblasts/radiation effects , Gene Expression Regulation , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/radiation effects , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Membrane Microdomains/drug effects , Membrane Microdomains/radiation effects , Mice , Mice, Inbred C57BL , Phagocytosis/drug effects , Phagocytosis/radiation effects , Primary Cell Culture , Protein Binding , Protein Transport/drug effects , Protein Transport/radiation effects , Receptors, Immunologic/genetics , Signal Transduction , Spleen/cytology , Spleen/drug effects , Spleen/immunology , Spleen/radiation effects , Ultraviolet Rays , beta-Cyclodextrins/pharmacology
9.
J Pathol ; 237(3): 285-95, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26095930

ABSTRACT

CD47, a self-recognition marker, plays an important role in both innate and adaptive immune responses. To explore the potential role of CD47 in activation of autoreactive T and B cells and the production of autoantibodies in autoimmune disease, especially systemic lupus erythematosus (SLE), we have generated CD47 knockout Fas(lpr) (CD47(-/-) -Fas(lpr) ) mice and examined histopathological changes in the kidneys, cumulative survival rates, proteinuria, extent of splenomegaly and autoantibodies, serum chemistry and immunological parameters. In comparison with Fas(lpr) mice, CD47(-/-) -Fas(lpr) mice exhibit a prolonged lifespan and delayed autoimmune nephritis, including glomerular cell proliferation, basement membrane thickening, acute tubular atrophy and vacuolization. CD47(-/-) -Fas(lpr) mice have lower levels of proteinuria, associated with reduced deposition of complement C3 and C1q, and IgG but not IgM in the glomeruli, compared to age-matched Fas(lpr) mice. Serum levels of antinuclear antibodies and anti-double-stranded DNA antibodies are significantly lower in CD47(-/-) -Fas(lpr) than in Fas(lpr) mice. CD47(-/-) -Fas(lpr) mice also display less pronounced splenomegaly than Fas(lpr) mice. The mechanistic studies further suggest that CD47 deficiency impairs the antigenic challenge-induced production of IgG but not IgM, and that this effect is associated with reduction of T follicular cells and impairment of germinal centre development in lymphoid tissues. In conclusion, our results demonstrate that CD47 deficiency ameliorates lupus nephritis in Fas(lpr) mice via suppression of IgG autoantibody production.


Subject(s)
Antibodies, Antinuclear/biosynthesis , CD47 Antigen/metabolism , Immunoglobulin G/biosynthesis , Kidney Glomerulus/metabolism , Lupus Nephritis/prevention & control , fas Receptor/deficiency , Animals , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , CD47 Antigen/genetics , CD47 Antigen/immunology , Cell Proliferation , Complement System Proteins/immunology , Complement System Proteins/metabolism , Disease Models, Animal , Immunoglobulin G/blood , Immunoglobulin G/immunology , Kidney Glomerulus/immunology , Kidney Glomerulus/pathology , Lupus Nephritis/genetics , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Mice, Inbred C57BL , Mice, Knockout , Proteinuria/genetics , Proteinuria/immunology , Proteinuria/metabolism , Proteinuria/prevention & control , Splenomegaly/genetics , Splenomegaly/immunology , Splenomegaly/metabolism , Splenomegaly/prevention & control , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Time Factors , fas Receptor/genetics , fas Receptor/immunology
10.
J Allergy Clin Immunol ; 132(2): 426-36.e8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23562609

ABSTRACT

BACKGROUND: Signal-regulatory protein α (SIRPα) is an essential signaling molecule that modulates leukocyte inflammatory responses. However, the regulation of selective SIRPα synthesis and its dynamic changes in leukocytes under inflammatory stimulation remain incompletely understood. OBJECTIVE: We sought to identify the microRNAs (miRNAs) that posttranscriptionally regulate SIRPα synthesis and their roles in modulating macrophage inflammatory responses. METHODS: SIRPα was induced in SIRPα-negative promyelocytic cells by retinoic acid or phorbol 12-myristate 13-acetate, and the differential expression of miRNAs was assessed by means of microarray and quantitative RT-PCR assays. The roles of identified miRNAs in controlling SIRPα synthesis in leukocytes and leukocyte inflammatory responses were determined. RESULTS: We identified SIRPα as a common target gene of miR-17, miR-20a, and miR-106a. During SIRPα induction, levels of these 3 miRNAs were all reduced, and their downregulation by retinoic acid or phorbol 12-myristate 13-acetate occurred through suppression of the c-Myc signaling pathway. All miR-17, miR-20a, and miR-106a specifically bound to the same seed sequence within the SIRPα 3' untranslated region and correlated inversely with SIRPα protein levels in various cells. In macrophages upregulation of miR-17, miR-20a, and miR-106a by LPS served as the mechanism underlying LPS-induced SIRPα reduction and macrophage activation. Both in vitro and in vivo assays demonstrate that miR-17, miR-20a, and miR-106a regulate macrophage infiltration, phagocytosis, and proinflammatory cytokine secretion through targeting SIRPα. CONCLUSION: These findings demonstrate for the first time that miR-17, miR-20a, and miR-106a regulate SIRPα synthesis and SIRPα-mediated macrophage inflammatory responses in a redundant fashion, providing a novel pathway in which a panel of miRNAs can modulate immune polarization through regulation of macrophage activation.


Subject(s)
Antigens, Differentiation/metabolism , Gene Expression Regulation , Macrophages/immunology , MicroRNAs/genetics , MicroRNAs/metabolism , Receptors, Immunologic/metabolism , Animals , Antigens, Differentiation/genetics , Cell Line , HL-60 Cells , Humans , Inflammation/immunology , Macrophage Activation , Male , Mice , Mice, Inbred C57BL , Receptors, Immunologic/genetics , Signal Transduction , U937 Cells
11.
J Ethnopharmacol ; 321: 117552, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38072293

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of traditional Chinese medicine, the main factors related to alcoholic liver disease (ALD) are qi stagnation and blood stasis of the five viscera. Previously, we showed that the bioactive components of Alhagi honey have various pharmacological effects in treating liver diseases, but the influence of Alhagi honey on ALD (and its mechanism of action) is not known. AIM OF THE STUDY: To determine the efficacy of the main active component of Alhagi honey, the polysaccharide AHPN80, in ALD and to explore the potential mechanism of action. MATERIALS AND METHODS: AHPN80 was isolated from dried Alhagi honey and identified by transmission electron microscopy, Fourier-transform infrared spectroscopy, and gas chromatography. Venous blood, liver tissue, and colon tissue were collected in a mouse model of alcohol-induced acute liver injury. Histology, staining (Oil Red O, Alcian Blue-Periodic Acid Schiff) and measurement of reactive oxygen species (ROS) levels were used to detect histopathologic and lipid-accumulation changes in the liver and colon. Lipopolysaccharide (LPS) levels and the content of proinflammatory cytokines in serum were measured by enzyme-linked immunosorbent assays. Commercial kits were employed to detect biochemistry parameters in serum and the liver. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining kit was used to identify hepatocyte apoptosis. Expression of tight junction-associated proteins in colon tissues and nuclear factor erythroid 2-related factor 2/heme oxygenase-1/toll-like receptor-4/mitogen-activated protein kinase (Nrf2/HO-1/TLR4/MAPK) pathway-related proteins in liver tissues and HepG2 cells were analyzed by immunofluorescence or western blotting. RESULTS: In a mouse model of alcohol-induced acute liver injury, AHPN80 therapy: significantly improved liver parameters (cytochrome P450 2E1, alcohol dehydrogenase, aldehyde dehydrogenase, superoxide dismutase, malondialdehyde, glutathione peroxidase, catalase, total cholesterol, triglycerides, alanine transaminase, aspartate transaminase); reduced serum levels of LPS, interleukin (IL)-1ß, IL-6, and tumor necrosis faction-α; increased levels of IL-10 and interferon-gamma. AHPN80 reduced ALD-induced lipid accumulation and ROS production, improved alcohol-induced inflammatory damage to hepatocytes, and inhibited hepatocyte apoptosis. Immunofluorescence staining and western blotting suggested that AHPN80 might eliminate hepatic oxidative stress by activating the Nrf2/HO-1 signaling pathway, repair the intestinal barrier, inhibit the LPS/TLR4/MAPK signaling pathway, and reduce liver inflammation. CONCLUSIONS: AHPN80 may activate the Nrf2/HO-1 pathway to eliminate oxidative stress, protect the intestinal barrier, and regulate the TLR4/MAPK pathway to treat ALD in mice. AHPN80 could be a functional food and natural medicine to prevent ALD and its complications.


Subject(s)
Honey , Liver Diseases, Alcoholic , Mice , Animals , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/metabolism , Signal Transduction , Liver , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Oxidative Stress , Ethanol/pharmacology , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
12.
Int J Biol Macromol ; 259(Pt 1): 128937, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145695

ABSTRACT

The Alhagi honey polysaccharide (AHP) exhibits notable anti-inflammatory, antioxidant, and immunomodulatory properties, positioning it as a promising candidate in traditional Chinese medicine. In this investigation, we successfully isolated and purified a neutral AHP, designated AHPN50-1a, subsequently elucidating its structural attributes. AHPN50-1a was found to have a molecular weight of 1.756 × 106 Da, featuring a structural motif characterized by a recurring (1→6)-α-GlcP linker. To comprehensively evaluate its therapeutic potential, we explored the protective effects of AHPN50-1 in a murine model of dextran sodium sulfate-induced colitis. Administration of AHPN50-1 at doses of 200 and 400 mg/kg/day resulted in improved food intake, increased body weight, and increased colon length in mice with acute colitis. Simultaneously, a reduction in the disease activity index and histological scores was observed. AHPN50-1 effectively mitigated colon tissue damage, down-regulated the expression levels of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) in colon tissue, restored intestinal microbiota diversity, and concentrations of short-chain fatty acids (SCFAs) of gut microbiota metabolites, thus alleviating intestinal inflammation in mice. In summary, our findings underscore the promise of AHPN50-1 as a valuable nutritional or dietary supplement for the treatment and prevention of inflammatory bowel disease.


Subject(s)
Colitis , Gastrointestinal Microbiome , Honey , Inflammatory Bowel Diseases , Animals , Mice , Colon , Dysbiosis/drug therapy , Dysbiosis/pathology , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Cytokines/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal
13.
Fitoterapia ; 175: 105974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663563

ABSTRACT

Alhagi honey is derived from the secretory granules of Alhagi pseudoalhagi Desv., a leguminous plant commonly known as camelthorn. Modern medical research has demonstrated that the extract of Alhagi honey possesses regulatory properties for the gastrointestinal tract and immune system, as well as exerts anti-tumor, anti-oxidative, anti-inflammatory, anti-bacterial, and hepatoprotective effects. The aim of this study was to isolate and purify oligosaccharide monomers (referred to as Mel) from camelthorn and elucidate their structural characteristics. Subsequently, the impact of Mel on liver injury induced by carbon tetrachloride (CCl4) in mice was investigated. The analysis identified the isolated oligosaccharide monomer (α-D-Glcp-(1 â†’ 3)-ß-D-Fruf-(2 â†’ 1)-α-D-Glcp), with the molecular formula C18H32O16. In a mouse model of CCl4-induced liver fibrosis, Mel demonstrated significant therapeutic effects by attenuating the development of fibrosis. Moreover, it enhanced anti-oxidant enzyme activity (glutathione peroxidase and superoxide dismutase) in liver tissues, thereby reducing oxidative stress markers (malondialdehyde and reactive oxygen species). Mel also improved serum albumin levels, lowered liver enzyme activities (aspartate aminotransferase and alanine aminotransferase), and decreased inflammatory factors (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6). Immunohistochemistry, immunofluorescence, and western blotting analyses confirmed the ability of Mel to downregulate hepatic stellate cell-specific markers (collagen type I alpha 1 chain, alpha-smooth muscle actin, transforming growth factor-beta 1. Non-targeted metabolomics analysis revealed the influence of Mel on metabolic pathways related to glutathione, niacin, pyrimidine, butyric acid, and amino acids. In conclusion, the results of our study highlight the promising potential of Mel, derived from Alhagi honey, as a viable candidate drug for treating liver fibrosis. This discovery offers a potentially advantageous option for individuals seeking natural and effective means to promote liver health.


Subject(s)
Honey , Liver Cirrhosis , Oligosaccharides , Animals , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Oligosaccharides/pharmacology , Oligosaccharides/isolation & purification , Oligosaccharides/chemistry , Male , Fabaceae/chemistry , Carbon Tetrachloride , Liver/drug effects , Liver/pathology , Molecular Structure , Oxidative Stress/drug effects , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Malondialdehyde/metabolism
14.
Heliyon ; 9(10): e20386, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37767496

ABSTRACT

By targeting the membrane (M) proteins of monkeypox virus (MPXV) strain VEROE6, we analyzed its evolutionary hierarchy and predicted its dominant antigenic B-cell epitope to provide a theoretical basis for the development of MPXV epitope vaccines and related monoclonal antibodies. In this study, phylogenetic trees were constructed based on the nucleic acid sequences of MPXV and the amino acid sequences of M proteins. The 3D structure of the MPXV_VEROE6 M proteins was predicted with AlphaFold v2.0 and the dominant antigenic B-cell epitopes were comprehensively predicted by analyzing parameters such as flexible segments, the hydrophilic index, the antigenic index, and the protein surface probability. The results showed that the M protein of MPXV_VEROE6 contained 377 amino acids, and their spatial configuration was relatively regular with a turning and random coil structure. The results of a comprehensive multiparameter analysis indicated that possible B-cell epitopes were located in the 23-28, 57-63, 67-78, 80-93, 98-105, 125-131, 143-149, 201-206, 231-237, 261-270, 291-303, and 346-362 amino acid segments. This study elucidated the structural and evolutionary characteristics of MPXV membrane proteins with the aim of providing theoretical information for the development of epitope vaccines, rapid diagnostic reagents, and monoclonal antibodies for monkeypox virus.

15.
Sci Total Environ ; 893: 164866, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37329906

ABSTRACT

With the anticipated application of engineered nanomaterials (ENMs) as foliar fertilizers in agriculture, there is a particular need to accurately assess crop intensification capacity, potential hazards, and effects on the soil environment when ENMs are applied alone or in combination. In this study, the joint analysis of scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) showed that ZnO NPs transformed on the leaf surface or within the leaf, and Fe3O4 NPs were able to translocate from the leaf (~ 25 memu/g) into the stem (~ 4 memu/g), but were unable to enter the grain (below 1 memu/g), guaranteeing food safety. Spray application of ZnO NPs significantly improved grain Zn content of wheat (40.34 mg/kg), whereas Fe3O4 NPs treatment and Zn + Fe NPs treatment did not significantly improve grain Fe content. According to the micro X-ray fluorescence of wheat grains(µ- XRF) and physiological structure in situ analysis showed that ZnO NPs treatment and Fe3O4 NPs treatment could increase the elemental contents of Zn and Fe in the crease tissue and endosperm components, respectively, while antagonism was observed in the grain treated with Zn + Fe NPs. The 16S rRNA gene sequencing results showed that the Fe3O4 NPs treatment had the greatest negative effect on soil bacterial community, followed by Zn + Fe NPs, and ZnO NPs showed some promotion effect. This may be caused by the significantly higher elemental contents of Zn/Fe in the treated roots and soils. This study critically evaluates the application potential and environmental risks of nanomaterials as foliar fertilizers and is instructive for agricultural applications of nanomaterials alone and in combination.


Subject(s)
Nanoparticles , Soil Pollutants , Zinc Oxide , Zinc Oxide/analysis , Soil , Triticum , Fertilizers/analysis , RNA, Ribosomal, 16S , Nutrients/analysis , Edible Grain/chemistry , Food Safety , Soil Pollutants/analysis
16.
Front Plant Sci ; 14: 1247156, 2023.
Article in English | MEDLINE | ID: mdl-38023833

ABSTRACT

Introduction: Nut quality detection is of paramount importance in primary nut processing. When striving to maintain the imperatives of rapid, efficient, and accurate detection, the precision of identifying small-sized nuts can be substantially compromised. Methods: We introduced an optimized iteration of the YOLOv5s model designed to swiftly and precisely identify both good and bad walnut nuts across multiple targets. The M3-Net network, which is a replacement for the original C3 network in MobileNetV3's YOLOv5s, reduces the weight of the model. We explored the impact of incorporating the attention mechanism at various positions to enhance model performance. Furthermore, we introduced an attentional convolutional adaptive fusion module (Acmix) within the spatial pyramid pooling layer to improve feature extraction. In addition, we replaced the SiLU activation function in the original Conv module with MetaAconC from the CBM module to enhance feature detection in walnut images across different scales. Results: In comparative trials, the YOLOv5s_AMM model surpassed the standard detection networks, exhibiting an average detection accuracy (mAP) of 80.78%, an increase of 1.81%, while reducing the model size to 20.9 MB (a compression of 22.88%) and achieving a detection speed of 40.42 frames per second. In multi-target walnut detection across various scales, the enhanced model consistently outperformed its predecessor in terms of accuracy, model size, and detection speed. It notably improves the ability to detect multi-target walnut situations, both large and small, while maintaining the accuracy and efficiency. Discussion: The results underscored the superiority of the YOLOv5s_AMM model, which achieved the highest average detection accuracy (mAP) of 80.78%, while boasting the smallest model size at 20.9 MB and the highest frame rate of 40.42 FPS. Our optimized network excels in the rapid, efficient, and accurate detection of mixed multi-target dry walnut quality, accommodating lightweight edge devices. This research provides valuable insights for the detection of multi-target good and bad walnuts during the walnut processing stage.

17.
Sci Total Environ ; 857(Pt 1): 159307, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36216048

ABSTRACT

Zinc oxide nanoparticles (ZnO-NPs) are metal-based nanomaterials, but their long-term effects on plant growth and the soil environment in the field remain unclear with most previous studies using short-term laboratory and glasshouse studies. In this study, we used a field experiment to examine the long-term effects of ZnO-NPs in a soil-wheat (Triticum aestivum) system. It was found that although ZnO-NPs had no significant effect on either yield or the concentration of other nutrients within the grain, the application of ZnO-NPs significantly increased Zn concentrations. Indeed, for grain, the application of ZnO-NPs to both the soil and foliage (SFZnO) (average of 33.1 mg/kg) significantly increased grain Zn concentrations compared to the the control treatment (21.7 mg/kg). Using in situ analyses, nutrients were found to accumulate primarily in the crease tissue and the aleurone layer of the grain, regardless of treatment. Specifically, the concentration of Zn in the aleurone layer for the SFZnO treatment was 2-3 times higher than that in the control, being >300 mg/kg, whilst the Zn concentration in the crease tissue was ca. 600 mg/kg in the SFZnO treatment, being two times higher than for the control. Although the application of ZnO-NPs increased the total Zn within the grain, it did not accumulate within the grain as ZnO-NPs with this being important for food safety, but rather mainly as Zn-phytate, with the remainder of the Zn complexed with either cysteine or phosphate. Finally, we also observed that ZnO-NPs caused fewer changes to the soil bacterial community structure and that it had no nano-specific toxicity.


Subject(s)
Nanoparticles , Soil Pollutants , Zinc Oxide , Zinc Oxide/chemistry , Triticum , Soil , Nanoparticles/toxicity , Edible Grain/chemistry , Soil Pollutants/analysis
18.
Clin Transl Med ; 12(5): e821, 2022 05.
Article in English | MEDLINE | ID: mdl-35522918

ABSTRACT

BACKGROUND: During pregnancy, mother-child interactions trigger a variety of subtle changes in the maternal body, which may be reflected in the status of peripheral blood mononuclear cells (PBMCs). Although these cells are easy to access and monitor, a PBMC atlas for pregnant women has not yet been constructed. METHODS: We applied single-cell RNA sequencing (scRNA-seq) to profile 198,356 PBMCs derived from 136 pregnant women (gestation weeks 6 to 40) and a control cohort. We also used scRNA-seq data to establish a transcriptomic clock and thereby predicted the gestational age of normal pregnancy. RESULTS: We identified reconfiguration of the peripheral immune cell phenotype during pregnancy, including interferon-stimulated gene upregulation, activation of RNA splicing-related pathways and immune activity of cell subpopulations. We also developed a cell-type-specific model to predict gestational age of normal pregnancy. CONCLUSIONS: We constructed a single-cell atlas of PBMCs in pregnant women spanning the entire gestation period, which should help improve our understanding of PBMC composition turnover in pregnant women.


Subject(s)
Leukocytes, Mononuclear , Pregnant Women , Female , Gestational Age , Humans , Immunophenotyping , Leukocytes, Mononuclear/metabolism , Pregnancy , Transcriptome
19.
Clin Transl Med ; 12(8): e886, 2022 08.
Article in English | MEDLINE | ID: mdl-35917402

ABSTRACT

BACKGROUND: The exact animal origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains obscure and understanding its host range is vital for preventing interspecies transmission. METHODS: Herein, we applied single-cell sequencing to multiple tissues of 20 species (30 data sets) and integrated them with public resources (45 data sets covering 26 species) to expand the virus receptor distribution investigation. While the binding affinity between virus and receptor is essential for viral infectivity, understanding the receptor distribution could predict the permissive organs and tissues when infection occurs. RESULTS: Based on the transcriptomic data, the expression profiles of receptor or associated entry factors for viruses capable of causing respiratory, blood, and brain diseases were described in detail. Conserved cellular connectomes and regulomes were also identified, revealing fundamental cell-cell and gene-gene cross-talks from reptiles to humans. CONCLUSIONS: Overall, our study provides a resource of the single-cell atlas of the animal kingdom which could help to identify the potential host range and tissue tropism of viruses and reveal the host-virus co-evolution.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/genetics , Host Specificity , Humans , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
20.
Nat Commun ; 13(1): 3620, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750885

ABSTRACT

Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-ß, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.


Subject(s)
Endothelial Cells , Microglia , Animals , Microglia/metabolism , Phenotype , Regulon/genetics , Single-Cell Analysis , Swine , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL