Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Am Chem Soc ; 146(3): 1753-1759, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38193812

ABSTRACT

Herein, we report the direct carboxylation of unactivated secondary alkyl bromides enabled by the merger of photoredox and nickel catalysis, a previously inaccessible endeavor in the carboxylation arena. Site-selectivity is dictated by a kinetically controlled insertion of CO2 at the initial C(sp3)-Br site by the rapid formation of Ni(I)-alkyl species, thus avoiding undesired ß-hydride elimination and chain-walking processes. Preliminary mechanistic experiments reveal the subtleties of stereoelectronic effects for guiding the reactivity and site-selectivity.

2.
Angew Chem Int Ed Engl ; 62(17): e202218728, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36800485

ABSTRACT

Molecular electrocatalysts for CO2 -to-CO conversion often operate at large overpotentials, due to the large barrier for C-O bond cleavage. Illustrated with ruthenium polypyridyl catalysts, we herein propose a mechanistic route that involves one metal center that acts as both Lewis base and Lewis acid at different stages of the catalytic cycle, by density functional theory in corroboration with experimental FTIR. The nucleophilic character of the Ru center manifests itself in the initial attack on CO2 to form [Ru-CO2 ]0 , while its electrophilic character allows for the formation of a 5-membered metallacyclic intermediate, [Ru-CO2 CO2 ]0,c , by addition of a second CO2 molecule and intramolecular cyclization. The calculated activation barrier for C-O bond cleavage via the metallacycle is decreased by 34.9 kcal mol-1 as compared to the non-cyclic adduct in the two electron reduced state of complex 1. Such metallacyclic intermediates in electrocatalytic CO2 reduction offer a new design feature that can be implemented consciously in future catalyst designs.

SELECTION OF CITATIONS
SEARCH DETAIL