Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Cell ; 178(3): 612-623.e12, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348888

ABSTRACT

Group II introns are a class of retroelements that invade DNA through a copy-and-paste mechanism known as retrotransposition. Their coordinated activities occur within a complex that includes a maturase protein, which promotes splicing through an unknown mechanism. The mechanism of splice site exchange within the RNA active site during catalysis also remains unclear. We determined two cryo-EM structures at 3.6-Å resolution of a group II intron reverse splicing into DNA. These structures reveal that the branch-site domain VI helix swings 90°, enabling substrate exchange during DNA integration. The maturase assists catalysis through a transient RNA-protein contact with domain VI that positions the branch-site adenosine for lariat formation during forward splicing. These findings provide the first direct evidence of the role the maturase plays during group II intron catalysis. The domain VI dynamics closely parallel spliceosomal branch-site helix movement and provide strong evidence for a retroelement origin of the spliceosome.


Subject(s)
RNA Splicing , RNA-Directed DNA Polymerase/chemistry , RNA/chemistry , Catalytic Domain , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Nucleic Acid Conformation , Protein Structure, Tertiary , RNA/metabolism , RNA-Directed DNA Polymerase/metabolism , Retroelements , Spliceosomes/chemistry
2.
Cell ; 175(1): 212-223.e17, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30241607

ABSTRACT

CRISPR-Cas endonucleases directed against foreign nucleic acids mediate prokaryotic adaptive immunity and have been tailored for broad genetic engineering applications. Type VI-D CRISPR systems contain the smallest known family of single effector Cas enzymes, and their signature Cas13d ribonuclease employs guide RNAs to cleave matching target RNAs. To understand the molecular basis for Cas13d function and explain its compact molecular architecture, we resolved cryoelectron microscopy structures of Cas13d-guide RNA binary complex and Cas13d-guide-target RNA ternary complex to 3.4 and 3.3 Å resolution, respectively. Furthermore, a 6.5 Å reconstruction of apo Cas13d combined with hydrogen-deuterium exchange revealed conformational dynamics that have implications for RNA scanning. These structures, together with biochemical and cellular characterization, provide insights into its RNA-guided, RNA-targeting mechanism and delineate a blueprint for the rational design of improved transcriptome engineering technologies.


Subject(s)
CRISPR-Cas Systems/genetics , RNA, Guide, Kinetoplastida/physiology , Ribonucleases/physiology , CRISPR-Cas Systems/physiology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Cryoelectron Microscopy/methods , Endonucleases/metabolism , HEK293 Cells , Humans , Molecular Conformation , RNA/genetics , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/ultrastructure , Ribonucleases/metabolism , Ribonucleases/ultrastructure
3.
Cell ; 167(6): 1610-1622.e15, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912064

ABSTRACT

The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ∼4-5 Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be "re-routed" through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines.


Subject(s)
Escherichia coli/chemistry , Escherichia coli/metabolism , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/metabolism , Cryoelectron Microscopy , Mass Spectrometry , Models, Molecular , Protein Multimerization , RNA, Bacterial/metabolism , RNA, Ribosomal/metabolism
4.
Proc Natl Acad Sci U S A ; 121(15): e2316662121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557187

ABSTRACT

Drug resistance in HIV type 1 (HIV-1) is a pervasive problem that affects the lives of millions of people worldwide. Although records of drug-resistant mutations (DRMs) have been extensively tabulated within public repositories, our understanding of the evolutionary kinetics of DRMs and how they evolve together remains limited. Epistasis, the interaction between a DRM and other residues in HIV-1 protein sequences, is key to the temporal evolution of drug resistance. We use a Potts sequence-covariation statistical-energy model of HIV-1 protein fitness under drug selection pressure, which captures epistatic interactions between all positions, combined with kinetic Monte-Carlo simulations of sequence evolutionary trajectories, to explore the acquisition of DRMs as they arise in an ensemble of drug-naive patient protein sequences. We follow the time course of 52 DRMs in the enzymes protease, RT, and integrase, the primary targets of antiretroviral therapy. The rates at which DRMs emerge are highly correlated with their observed acquisition rates reported in the literature when drug pressure is applied. This result highlights the central role of epistasis in determining the kinetics governing DRM emergence. Whereas rapidly acquired DRMs begin to accumulate as soon as drug pressure is applied, slowly acquired DRMs are contingent on accessory mutations that appear only after prolonged drug pressure. We provide a foundation for using computational methods to determine the temporal evolution of drug resistance using Potts statistical potentials, which can be used to gain mechanistic insights into drug resistance pathways in HIV-1 and other infectious agents.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Drug Resistance, Viral/genetics , Genotype , HIV Infections/drug therapy , HIV Infections/genetics , Mutation , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use
5.
Nucleic Acids Res ; 51(6): 2862-2876, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36864669

ABSTRACT

Understanding the assembly principles of biological macromolecular complexes remains a significant challenge, due to the complexity of the systems and the difficulties in developing experimental approaches. As a ribonucleoprotein complex, the ribosome serves as a model system for the profiling of macromolecular complex assembly. In this work, we report an ensemble of large ribosomal subunit intermediate structures that accumulate during synthesis in a near-physiological and co-transcriptional in vitro reconstitution system. Thirteen pre-50S intermediate maps covering the entire assembly process were resolved using cryo-EM single-particle analysis and heterogeneous subclassification. Segmentation of the set of density maps reveals that the 50S ribosome intermediates assemble based on fourteen cooperative assembly blocks, including the smallest assembly core reported to date, which is composed of a 600-nucleotide-long folded rRNA and three ribosomal proteins. The cooperative blocks assemble onto the assembly core following defined dependencies, revealing the parallel pathways at both early and late assembly stages of the 50S subunit.


Subject(s)
RNA, Ribosomal , Ribosomes , Ribosomes/genetics , Ribosomes/metabolism , RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large/metabolism
6.
Nucleic Acids Res ; 50(15): 8898-8918, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35947647

ABSTRACT

Integration into host target DNA (tDNA), a hallmark of retroviral replication, is mediated by the intasome, a multimer of integrase (IN) assembled on viral DNA (vDNA) ends. To ascertain aspects of tDNA recognition during integration, we have solved the 3.5 Å resolution cryo-EM structure of the mouse mammary tumor virus (MMTV) strand transfer complex (STC) intasome. The tDNA adopts an A-like conformation in the region encompassing the sites of vDNA joining, which exposes the sugar-phosphate backbone for IN-mediated strand transfer. Examination of existing retroviral STC structures revealed conservation of A-form tDNA in the analogous regions of these complexes. Furthermore, analyses of sequence preferences in genomic integration sites selectively targeted by six different retroviruses highlighted consistent propensity for A-philic sequences at the sites of vDNA joining. Our structure additionally revealed several novel MMTV IN-DNA interactions, as well as contacts seen in prior STC structures, including conserved Pro125 and Tyr149 residues interacting with tDNA. In infected cells, Pro125 substitutions impacted the global pattern of MMTV integration without significantly altering local base sequence preferences at vDNA insertion sites. Collectively, these data advance our understanding of retroviral intasome structure and function, as well as factors that influence patterns of vDNA integration in genomic DNA.


Subject(s)
Integrases , Virus Integration , Animals , Mice , Integrases/metabolism , Retroviridae/genetics , Retroviridae/metabolism , DNA, Viral/genetics , DNA, Viral/chemistry , Molecular Conformation , Mammary Tumor Virus, Mouse/genetics , Mammary Tumor Virus, Mouse/metabolism
7.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791508

ABSTRACT

Cryogenic electron tomography (cryoET) is a powerful tool in structural biology, enabling detailed 3D imaging of biological specimens at a resolution of nanometers. Despite its potential, cryoET faces challenges such as the missing wedge problem, which limits reconstruction quality due to incomplete data collection angles. Recently, supervised deep learning methods leveraging convolutional neural networks (CNNs) have considerably addressed this issue; however, their pretraining requirements render them susceptible to inaccuracies and artifacts, particularly when representative training data is scarce. To overcome these limitations, we introduce a proof-of-concept unsupervised learning approach using coordinate networks (CNs) that optimizes network weights directly against input projections. This eliminates the need for pretraining, reducing reconstruction runtime by 3-20× compared to supervised methods. Our in silico results show improved shape completion and reduction of missing wedge artifacts, assessed through several voxel-based image quality metrics in real space and a novel directional Fourier Shell Correlation (FSC) metric. Our study illuminates benefits and considerations of both supervised and unsupervised approaches, guiding the development of improved reconstruction strategies.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Unsupervised Machine Learning , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Electron Microscope Tomography/methods , Cryoelectron Microscopy/methods , Algorithms , Deep Learning
8.
J Biol Chem ; 298(4): 101760, 2022 04.
Article in English | MEDLINE | ID: mdl-35202658

ABSTRACT

Enzyme filamentation is a widespread phenomenon that mediates enzyme regulation and function. For the filament-forming sequence-specific DNA endonuclease SgrAI, the process of filamentation both accelerates its DNA cleavage activity and expands its DNA sequence specificity, thus allowing for many additional DNA sequences to be rapidly cleaved. Both outcomes-the acceleration of DNA cleavage and the expansion of sequence specificity-are proposed to regulate critical processes in bacterial innate immunity. However, the mechanistic bases underlying these events remain unclear. Herein, we describe two new structures of the SgrAI enzyme that shed light on its catalytic function. First, we present the cryo-EM structure of filamentous SgrAI bound to intact primary site DNA and Ca2+ resolved to ∼2.5 Å within the catalytic center, which represents the trapped enzyme-DNA complex prior to the DNA cleavage reaction. This structure reveals important conformational changes that contribute to the catalytic mechanism and the binding of a second divalent cation in the enzyme active site, which is expected to contribute to increased DNA cleavage activity of SgrAI in the filamentous state. Second, we present an X-ray crystal structure of DNA-free (apo) SgrAI resolved to 2.0 Å resolution, which reveals a disordered loop involved in DNA recognition. Collectively, these multiple new observations clarify the mechanism of expansion of DNA sequence specificity of SgrAI, including the indirect readout of sequence-dependent DNA structure, changes in protein-DNA interactions, and the disorder-to-order transition of a crucial DNA recognition element.


Subject(s)
DNA Cleavage , Deoxyribonucleases, Type II Site-Specific , Allosteric Regulation , Binding Sites , Deoxyribonucleases, Type II Site-Specific/chemistry , Substrate Specificity
9.
Nature ; 547(7663): 360-363, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28700571

ABSTRACT

For many enveloped viruses, binding to a receptor(s) on a host cell acts as the first step in a series of events culminating in fusion with the host cell membrane and transfer of genetic material for replication. The envelope glycoprotein (Env) trimer on the surface of HIV is responsible for receptor binding and fusion. Although Env can tolerate a high degree of mutation in five variable regions (V1-V5), and also at N-linked glycosylation sites that contribute roughly half the mass of Env, the functional sites for recognition of receptor CD4 and co-receptor CXCR4/CCR5 are conserved and essential for viral fitness. Soluble SOSIP Env trimers are structural and antigenic mimics of the pre-fusion native, surface-presented Env, and are targets of broadly neutralizing antibodies. Thus, they are attractive immunogens for vaccine development. Here we present high-resolution cryo-electron microscopy structures of subtype B B41 SOSIP Env trimers in complex with CD4 and antibody 17b, or with antibody b12, at resolutions of 3.7 Å and 3.6 Å, respectively. We compare these to cryo-electron microscopy reconstructions of B41 SOSIP Env trimers with no ligand or in complex with either CD4 or the CD4-binding-site antibody PGV04 at 5.6 Å, 5.2 Å and 7.4 Å resolution, respectively. Consequently, we present the most complete description yet, to our knowledge, of the CD4-17b-induced intermediate and provide the molecular basis of the receptor-binding-induced conformational change required for HIV-1 entry into host cells. Both CD4 and b12 induce large, previously uncharacterized conformational rearrangements in the gp41 subunits, and the fusion peptide becomes buried in a newly formed pocket. These structures provide key details on the biological function of the type I viral fusion machine from HIV-1 as well as new templates for inhibitor design.


Subject(s)
Allosteric Regulation , Cryoelectron Microscopy , HIV-1/chemistry , HIV-1/ultrastructure , env Gene Products, Human Immunodeficiency Virus/metabolism , env Gene Products, Human Immunodeficiency Virus/ultrastructure , Allosteric Regulation/drug effects , Amino Acid Sequence , Antibodies/chemistry , Antibodies/immunology , Antibodies/pharmacology , Antibodies/ultrastructure , Binding Sites/drug effects , CD4 Antigens/chemistry , CD4 Antigens/metabolism , CD4 Antigens/ultrastructure , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/metabolism , HIV Envelope Protein gp41/ultrastructure , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/pharmacology , Immunoglobulin Fab Fragments/ultrastructure , Ligands , Models, Molecular , Receptors, CCR5/chemistry , Receptors, CCR5/metabolism , Receptors, HIV/chemistry , Receptors, HIV/metabolism , Receptors, HIV/ultrastructure , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
10.
Biochem Soc Trans ; 50(6): 1703-1714, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36398769

ABSTRACT

Filament formation by metabolic, biosynthetic, and other enzymes has recently come into focus as a mechanism to fine-tune enzyme activity in the cell. Filamentation is key to the function of SgrAI, a sequence-specific DNA endonuclease that has served as a model system to provide some of the deepest insights into the biophysical characteristics of filamentation and its functional consequences. Structure-function analyses reveal that, in the filamentous state, SgrAI stabilizes an activated enzyme conformation that leads to accelerated DNA cleavage activity and expanded DNA sequence specificity. The latter is thought to be mediated by sequence-specific DNA structure, protein-DNA interactions, and a disorder-to-order transition in the protein, which collectively affect the relative stabilities of the inactive, non-filamentous conformation and the active, filamentous conformation of SgrAI bound to DNA. Full global kinetic modeling of the DNA cleavage pathway reveals a slow, rate-limiting, second-order association rate constant for filament assembly, and simulations of in vivo activity predict that filamentation is superior to non-filamenting mechanisms in ensuring rapid activation and sequestration of SgrAI's DNA cleavage activity on phage DNA and away from the host chromosome. In vivo studies demonstrate the critical requirement for accelerated DNA cleavage by SgrAI in its biological role to safeguard the bacterial host. Collectively, these data have advanced our understanding of how filamentation can regulate enzyme structure and function, while the experimental strategies used for SgrAI can be applied to other enzymatic systems to identify novel functional roles for filamentation.


Subject(s)
DNA , Base Sequence , Substrate Specificity , Allosteric Regulation , Protein Multimerization , DNA/chemistry
11.
Nature ; 530(7590): 358-61, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26887496

ABSTRACT

Retroviral integrase catalyses the integration of viral DNA into host target DNA, which is an essential step in the life cycle of all retroviruses. Previous structural characterization of integrase-viral DNA complexes, or intasomes, from the spumavirus prototype foamy virus revealed a functional integrase tetramer, and it is generally believed that intasomes derived from other retroviral genera use tetrameric integrase. However, the intasomes of orthoretroviruses, which include all known pathogenic species, have not been characterized structurally. Here, using single-particle cryo-electron microscopy and X-ray crystallography, we determine an unexpected octameric integrase architecture for the intasome of the betaretrovirus mouse mammary tumour virus. The structure is composed of two core integrase dimers, which interact with the viral DNA ends and structurally mimic the integrase tetramer of prototype foamy virus, and two flanking integrase dimers that engage the core structure via their integrase carboxy-terminal domains. Contrary to the belief that tetrameric integrase components are sufficient to catalyse integration, the flanking integrase dimers were necessary for mouse mammary tumour virus integrase activity. The integrase octamer solves a conundrum for betaretroviruses as well as alpharetroviruses by providing critical carboxy-terminal domains to the intasome core that cannot be provided in cis because of evolutionarily restrictive catalytic core domain-carboxy-terminal domain linker regions. The octameric architecture of the intasome of mouse mammary tumour virus provides new insight into the structural basis of retroviral DNA integration.


Subject(s)
Cryoelectron Microscopy , DNA, Viral/metabolism , DNA, Viral/ultrastructure , Integrases/chemistry , Integrases/ultrastructure , Mammary Tumor Virus, Mouse/enzymology , Protein Multimerization , Catalytic Domain , Crystallography, X-Ray , DNA, Viral/chemistry , Integrases/metabolism , Mammary Tumor Virus, Mouse/chemistry , Mammary Tumor Virus, Mouse/genetics , Mammary Tumor Virus, Mouse/ultrastructure , Models, Molecular , Protein Structure, Quaternary , Spumavirus/chemistry , Spumavirus/enzymology , Virus Integration
12.
J Biol Chem ; 294(13): 5181-5197, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30804214

ABSTRACT

Cryogenic electron microscopy (cryo-EM) enables structure determination of macromolecular objects and their assemblies. Although the techniques have been developing for nearly four decades, they have gained widespread attention in recent years due to technical advances on numerous fronts, enabling traditional microscopists to break into the world of molecular structural biology. Many samples can now be routinely analyzed at near-atomic resolution using standard imaging and image analysis techniques. However, numerous challenges to conventional workflows remain, and continued technical advances open entirely novel opportunities for discovery and exploration. Here, I will review some of the main methods surrounding cryo-EM with an emphasis specifically on single-particle analysis, and I will highlight challenges, open questions, and opportunities for methodology development.


Subject(s)
Cryoelectron Microscopy/methods , Imaging, Three-Dimensional/methods , Proteins/ultrastructure , Animals , Cryoelectron Microscopy/instrumentation , Equipment Design , Humans , Imaging, Three-Dimensional/instrumentation , Protein Conformation , Protein Interaction Maps , Proteins/chemistry , Proteins/metabolism
13.
Article in English | MEDLINE | ID: mdl-32601157

ABSTRACT

The currently recommended first-line therapy for HIV-1-infected patients is an integrase (IN) strand transfer inhibitor (INSTI), either dolutegravir (DTG) or bictegravir (BIC), in combination with two nucleoside reverse transcriptase inhibitors (NRTIs). Both DTG and BIC potently inhibit most INSTI-resistant IN mutants selected by the INSTIs raltegravir (RAL) and elvitegravir (EVG). BIC has not been reported to select for resistance in treatment-naive patients, and DTG has selected for a small number of resistant viruses in treatment-naive patients. However, some patients who had viruses with substitutions selected by RAL and EVG responded poorly when switched to DTG-based therapies, and there are mutants that cause a considerable decrease in the potencies of DTG and BIC in in vitro assays. The new INSTI cabotegravir (CAB), which is in late-stage clinical trials, has been shown to select for novel resistant mutants in vitro Thus, it is important to develop new and improved INSTIs that are effective against all the known resistant mutants. This led us to test our best inhibitors, in parallel with DTG, BIC, and CAB, in a single-round infection assay against a panel of the new CAB-resistant mutants. Of the INSTIs we tested, BIC and our compound 4d had the broadest efficacy. Both were superior to DTG, as evidenced by the data obtained with the IN mutant T66I/L74M/E138K/S147G/Q148R/S230N, which was selected by CAB using an EVG-resistant lab strain. These results support the preclinical development of compound 4d and provide information that can be used in the design of additional INSTIs that will be effective against a broad spectrum of resistant mutants.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , HIV Integrase , HIV-1 , Pharmaceutical Preparations , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Integrase/genetics , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use , HIV-1/genetics , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Oxazines/pharmacology , Piperazines/pharmacology , Pyridones/pharmacology
14.
Nat Methods ; 14(8): 793-796, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28671674

ABSTRACT

We present a strategy for tackling preferred specimen orientation in single-particle cryogenic electron microscopy by employing tilts during data collection. We also describe a tool to quantify the resulting directional resolution using 3D Fourier shell correlation volumes. We applied these methods to determine the structures at near-atomic resolution of the influenza hemagglutinin trimer, which adopts a highly preferred specimen orientation, and of ribosomal biogenesis intermediates, which adopt moderately preferred orientations.


Subject(s)
Cryoelectron Microscopy/methods , Hemagglutinin Glycoproteins, Influenza Virus/ultrastructure , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Molecular Imaging/methods , Specimen Handling/methods , Algorithms , Reproducibility of Results , Sensitivity and Specificity
17.
Proc Natl Acad Sci U S A ; 111(45): 15981-6, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25349383

ABSTRACT

All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis/physiology , Proteolysis , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitination/physiology , Protein Structure, Tertiary , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Amino Acyl/metabolism , RNA-Binding Proteins , Ribosome Subunits, Large, Eukaryotic/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity Relationship , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
18.
Proc Natl Acad Sci U S A ; 110(5): 1702-7, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23319619

ABSTRACT

Ltn1 is a 180-kDa E3 ubiquitin ligase that associates with ribosomes and marks certain aberrant, translationally arrested nascent polypeptide chains for proteasomal degradation. In addition to its evolutionarily conserved large size, Ltn1 is characterized by the presence of a conserved N terminus, HEAT/ARM repeats predicted to comprise the majority of the protein, and a C-terminal catalytic RING domain, although the protein's exact structure is unknown. We used numerous single-particle EM strategies to characterize Ltn1's structure based on negative stain and vitreous ice data. Two-dimensional classifications and subsequent 3D reconstructions of electron density maps show that Ltn1 has an elongated form and presents a continuum of conformational states about two flexible hinge regions, whereas its overall architecture is reminiscent of multisubunit cullin-RING ubiquitin ligase complexes. We propose a model of Ltn1 function based on its conformational variability and flexibility that describes how these features may play a role in cotranslational protein quality control.


Subject(s)
Microscopy, Electron/methods , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/ultrastructure , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Carrier Proteins/ultrastructure , Cullin Proteins/chemistry , Cullin Proteins/metabolism , Cullin Proteins/ultrastructure , Humans , Imaging, Three-Dimensional , Models, Molecular , Particle Size , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitin/ultrastructure , Ubiquitin-Protein Ligases/metabolism
19.
J Struct Biol ; 192(2): 235-44, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26470814

ABSTRACT

A single-particle cryoEM reconstruction of the large ribosomal subunit from Saccharomyces cerevisiae was obtained from a dataset of ∼75,000 particles. The gold-standard and frequency-limited approaches to single-particle refinement were each independently used to determine orientation parameters for the final reconstruction. Both approaches showed similar resolution curves and nominal resolution values for the 60S dataset, estimated at 2.9 Å. The amount of over-fitting present during frequency-limited refinement was quantitatively analyzed using the high-resolution phase-randomization test, and the results showed no apparent over-fitting. The number of asymmetric subunits required to reach specific resolutions was subsequently analyzed by refining subsets of the data in an ab initio manner. With our data collection and processing strategies, sub-nanometer resolution was obtained with ∼200 asymmetric subunits (or, equivalently for the ribosomal subunit, particles). Resolutions of 5.6 Å, 4.5 Å, and 3.8 Å were reached with ∼1000, ∼1600, and ∼5000 asymmetric subunits, respectively. At these resolutions, one would expect to detect alpha-helical pitch, separation of beta-strands, and separation of Cα atoms, respectively. Using this map, together with strategies for ab initio model building and model refinement, we built a region of the ribosomal protein eL6, which was missing in previous models of the yeast ribosome. The relevance for more routine high-resolution structure determination is discussed.


Subject(s)
Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/methods , Ribosome Subunits, Large, Eukaryotic/ultrastructure , Models, Molecular , Protein Structure, Quaternary , Saccharomyces cerevisiae/genetics
20.
Nat Struct Mol Biol ; 31(1): 179-189, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057551

ABSTRACT

Branching is a critical step in RNA splicing that is essential for 5' splice site selection. Recent spliceosome structures have led to competing models for the recognition of the invariant adenosine at the branch point. However, there are no structures of any splicing complex with the adenosine nucleophile docked in the active site and positioned to attack the 5' splice site. Thus we lack a mechanistic understanding of adenosine selection and splice site recognition during RNA splicing. Here we present a cryo-electron microscopy structure of a group II intron that reveals that active site dynamics are coupled to the formation of a base triple within the branch-site helix that positions the 2'-OH of the adenosine for nucleophilic attack on the 5' scissile phosphate. This structure, complemented with biochemistry and comparative analyses to splicing complexes, supports a base triple model of adenosine recognition for branching within group II introns and the evolutionarily related spliceosome.


Subject(s)
RNA Splice Sites , RNA Splicing , Cryoelectron Microscopy , Spliceosomes/metabolism , Introns , Adenosine/chemistry , RNA Precursors/metabolism , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL