Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Publication year range
1.
Mov Disord ; 39(5): 897-905, 2024 May.
Article in English | MEDLINE | ID: mdl-38436103

ABSTRACT

BACKGROUND: Although the group of paroxysmal kinesigenic dyskinesia (PKD) genes is expanding, the molecular cause remains elusive in more than 50% of cases. OBJECTIVE: The aim is to identify the missing genetic causes of PKD. METHODS: Phenotypic characterization, whole exome sequencing and association test were performed among 53 PKD cases. RESULTS: We identified four causative variants in KCNJ10, already associated with EAST syndrome (epilepsy, cerebellar ataxia, sensorineural hearing impairment and renal tubulopathy). Homozygous p.(Ile209Thr) variant was found in two brothers from a single autosomal recessive PKD family, whereas heterozygous p.(Cys294Tyr) and p.(Thr178Ile) variants were found in six patients from two autosomal dominant PKD families. Heterozygous p.(Arg180His) variant was identified in one additional sporadic PKD case. Compared to the Genome Aggregation Database v2.1.1, our PKD cohort was significantly enriched in both rare heterozygous (odds ratio, 21.6; P = 9.7 × 10-8) and rare homozygous (odds ratio, 2047; P = 1.65 × 10-6) missense variants in KCNJ10. CONCLUSIONS: We demonstrated that both rare monoallelic and biallelic missense variants in KCNJ10 are associated with PKD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dystonia , Mutation, Missense , Potassium Channels, Inwardly Rectifying , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Young Adult , Dystonia/genetics , Exome Sequencing , Mutation, Missense/genetics , Pedigree , Potassium Channels, Inwardly Rectifying/genetics
2.
J Med Genet ; 60(7): 717-721, 2023 07.
Article in English | MEDLINE | ID: mdl-36599645

ABSTRACT

Usually, molecular diagnosis of spinocerebellar ataxia is based on a step-by-step approach with targeted sizing of four repeat expansions accounting for most dominant cases, then targeted sequencing of other genes. Nowadays, genome sequencing allows detection of most pathogenic variants in a single step. The ExpansionHunter tool can detect expansions in short-read genome sequencing data. Recent studies have shown that ExpansionHunter can also be used to identify repeat expansions in exome sequencing data. We tested ExpansionHunter on spinocerebellar ataxia exomes in a research context as a second-line analysis, after exclusion of main CAG repeat expansions in half of the probands. First, we confirmed the detection of expansions in seven known expansion carriers and then, after targeted analysis of ATXN1, 2, 3 and 7, CACNA1A, TBP, ATN1, NOP56, AR and HTT in 498 exomes, we found 22 additional pathogenic expansions. Comparison with capillary migration sizing in 247 individuals and confirmation of all expanded alleles detected by ExpansionHunter demonstrated that for these loci, sensitivity and specificity reached 100%. ExpansionHunter detected but underestimated the repeat size for larger expansions, and the normal alleles distribution at each locus should be taken into account to detect expansions. Exome combined with ExpansionHunter is reliable to detect repeat expansions in selected loci as first-line analysis in spinocerebellar ataxia.


Subject(s)
Exome , Spinocerebellar Ataxias , Humans , Exome/genetics , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics , Alleles , Heterozygote
3.
J Med Genet ; 60(11): 1116-1126, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37308287

ABSTRACT

BACKGROUND: Mirror movements are involuntary movements of one hand that mirror intentional movements of the other hand. Congenital mirror movements (CMM) is a rare genetic disorder with autosomal dominant inheritance, in which mirror movements are the main neurological manifestation. CMM is associated with an abnormal decussation of the corticospinal tract, a major motor tract for voluntary movements. RAD51 is known to play a key role in homologous recombination with a critical function in DNA repair. While RAD51 haploinsufficiency was first proposed to explain CMM, other mechanisms could be involved. METHODS: We performed Sanger sequencing of RAD51 in five newly identified CMM families to identify new pathogenic variants. We further investigated the expression of wild-type and mutant RAD51 in the patients' lymphoblasts at mRNA and protein levels. We then characterised the functions of RAD51 altered by non-truncating variants using biochemical approaches. RESULTS: The level of wild-type RAD51 protein was lower in the cells of all patients with CMM compared with their non-carrier relatives. The reduction was less pronounced in asymptomatic carriers. In vitro, mutant RAD51 proteins showed loss-of-function for polymerisation, DNA binding and strand exchange activity. CONCLUSION: Our study demonstrates that RAD51 haploinsufficiency, including loss-of-function of non-truncating variants, results in CMM. The incomplete penetrance likely results from post-transcriptional compensation. Changes in RAD51 levels and/or polymerisation properties could influence guidance of the corticospinal axons during development. Our findings open up new perspectives to understand the role of RAD51 in neurodevelopment.

4.
Mov Disord ; 38(7): 1187-1196, 2023 07.
Article in English | MEDLINE | ID: mdl-37148555

ABSTRACT

BACKGROUND: Cervical dystonia (CD) is a form of isolated focal dystonia typically associated to abnormal head, neck, and shoulder movements and postures. The complexity of the clinical presentation limits the investigation of its pathophysiological mechanisms, and the neural networks associated to specific motor manifestations are still the object of debate. OBJECTIVES: We investigated the morphometric properties of white matter fibers in CD and explored the networks associated with motor symptoms, while regressing out nonmotor scores. METHODS: Nineteen patients affected by CD and 21 healthy controls underwent diffusion-weighted magnetic resonance imaging. We performed fixel-based analysis, a novel method evaluating fiber orientation within specific fiber bundles, and compared fiber morphometric properties between groups. Moreover, we correlated fiber morphometry with the severity of motor symptoms in patients. RESULTS: Compared to controls, patients exhibited decreased white matter fibers in the right striatum. Motor symptom severity negatively correlated with white matter fibers passing through inferior parietal areas and the head representation area of the motor cortex. CONCLUSIONS: Abnormal white matter integrity at the basal ganglia level may affect several functional networks involved, for instance, in motor preparation and execution, visuomotor coordination, and multimodal integration. This may result in progressive maladaptive plasticity, culminating in overt symptoms of dystonia. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dystonic Disorders , Torticollis , White Matter , Humans , Torticollis/diagnostic imaging , White Matter/diagnostic imaging , Magnetic Resonance Imaging , Brain , Dystonic Disorders/diagnostic imaging
5.
Mov Disord ; 37(6): 1294-1298, 2022 06.
Article in English | MEDLINE | ID: mdl-35384065

ABSTRACT

BACKGROUND: ADCY5-related dyskinesia is characterized by early-onset movement disorders. There is currently no validated treatment, but anecdotal clinical reports and biological hypotheses suggest efficacy of caffeine. OBJECTIVE: The aim is to obtain further insight into the efficacy and safety of caffeine in patients with ADCY5-related dyskinesia. METHODS: A retrospective study was conducted worldwide in 30 patients with a proven ADCY5 mutation who had tried or were taking caffeine for dyskinesia. Disease characteristics and treatment responses were assessed through a questionnaire. RESULTS: Caffeine was overall well tolerated, even in children, and 87% of patients reported a clear improvement. Caffeine reduced the frequency and duration of paroxysmal movement disorders but also improved baseline movement disorders and some other motor and nonmotor features, with consistent quality-of-life improvement. Three patients reported worsening. CONCLUSION: Our findings suggest that caffeine should be considered as a first-line therapeutic option in ADCY5-related dyskinesia. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Dyskinesias , Movement Disorders , Adenylyl Cyclases/genetics , Caffeine/therapeutic use , Child , Dyskinesias/etiology , Dyskinesias/genetics , Humans , Movement Disorders/genetics , Retrospective Studies
6.
Mov Disord ; 37(7): 1547-1554, 2022 07.
Article in English | MEDLINE | ID: mdl-35722775

ABSTRACT

BACKGROUND: Most reported patients carrying GNAO1 mutations showed a severe phenotype characterized by early-onset epileptic encephalopathy and/or chorea. OBJECTIVE: The aim was to characterize the clinical and genetic features of patients with mild GNAO1-related phenotype with prominent movement disorders. METHODS: We included patients diagnosed with GNAO1-related movement disorders of delayed onset (>2 years). Patients experiencing either severe or profound intellectual disability or early-onset epileptic encephalopathy were excluded. RESULTS: Twenty-four patients and 1 asymptomatic subject were included. All patients showed dystonia as prominent movement disorder. Dystonia was focal in 1, segmental in 6, multifocal in 4, and generalized in 13. Six patients showed adolescence or adulthood-onset dystonia. Seven patients presented with parkinsonism and 3 with myoclonus. Dysarthria was observed in 19 patients. Mild and moderate ID were present in 10 and 2 patients, respectively. CONCLUSION: We highlighted a mild GNAO1-related phenotype, including adolescent-onset dystonia, broadening the clinical spectrum of this condition. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dystonia , Dystonic Disorders , GTP-Binding Protein alpha Subunits, Gi-Go , Movement Disorders , Parkinsonian Disorders , Dystonia/genetics , Dystonic Disorders/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Humans , Movement Disorders/genetics , Parkinsonian Disorders/genetics , Phenotype
7.
Mov Disord ; 37(1): 137-147, 2022 01.
Article in English | MEDLINE | ID: mdl-34596301

ABSTRACT

BACKGROUND: Monogenic causes of isolated dystonia are heterogeneous. Assembling cohorts of affected individuals sufficiently large to establish new gene-disease relationships can be challenging. OBJECTIVE: We sought to expand the catalogue of monogenic etiologies for isolated dystonia. METHODS: After the discovery of a candidate variant in a multicenter exome-sequenced cohort of affected individuals with dystonia, we queried online platforms and genomic data repositories worldwide to identify subjects with matching genotypic profiles. RESULTS: Seven different biallelic loss-of-function variants in AOPEP were detected in five probands from four unrelated families with strongly overlapping phenotypes. In one proband, we observed a homozygous nonsense variant (c.1477C>T [p.Arg493*]). A second proband harbored compound heterozygous nonsense variants (c.763C>T [p.Arg255*]; c.777G>A [p.Trp259*]), whereas a third proband possessed a frameshift variant (c.696_697delAG [p.Ala234Serfs*5]) in trans with a splice-disrupting alteration (c.2041-1G>A). Two probands (siblings) from a fourth family shared compound heterozygous frameshift alleles (c.1215delT [p.Val406Cysfs*14]; c.1744delA [p.Met582Cysfs*6]). All variants were rare and expected to result in truncated proteins devoid of functionally important amino acid sequence. AOPEP, widely expressed in developing and adult human brain, encodes a zinc-dependent aminopeptidase, a member of a class of proteolytic enzymes implicated in synaptogenesis and neural maintenance. The probands presented with disabling progressive dystonia predominantly affecting upper and lower extremities, with variable involvement of craniocervical muscles. Dystonia was unaccompanied by any additional symptoms in three families, whereas the fourth family presented co-occurring late-onset parkinsonism. CONCLUSIONS: Our findings suggest a likely causative role of predicted inactivating biallelic AOPEP variants in cases of autosomal recessive dystonia. Additional studies are warranted to understand the pathophysiology associated with loss-of-function variation in AOPEP. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Aminopeptidases , Dystonia , Dystonic Disorders , Loss of Function Mutation , Aminopeptidases/genetics , Dystonia/genetics , Dystonic Disorders/genetics , Exome , Humans , Mutation , Pedigree , Phenotype
8.
Cereb Cortex ; 32(1): 216-230, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34590113

ABSTRACT

Action selection refers to the decision regarding which action to perform in order to reach a desired goal, that is, the "what" component of intention. Whether the action is freely chosen or externally instructed involves different brain networks during the selection phase, but it is assumed that the way an action is selected should not influence the subsequent execution phase of the same movement. Here, we aim to test this hypothesis by investigating whether the modality of movement selection influences the brain networks involved during the execution phase of the movement. Twenty healthy volunteers performed a delayed response task in an event-related functional magnetic resonance imaging design to compare freely chosen and instructed unimanual or bimanual movements during the execution phase. Using activation analyses, we found that the pre-supplementary motor area (preSMA) and the parietal and cerebellar areas were more activated during the execution phase of freely chosen as compared to instructed movements. Connectivity analysis showed an increase of information flow between the right posterior parietal cortex and the cerebellum for freely chosen compared to instructed movements. We suggest that the parieto-cerebellar network is particularly engaged during freely chosen movement to monitor the congruence between the intentional content of our actions and their outcome.


Subject(s)
Brain Mapping , Psychomotor Performance , Brain/diagnostic imaging , Brain/physiology , Humans , Magnetic Resonance Imaging , Movement/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology
9.
Brain ; 142(6): 1573-1586, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31009047

ABSTRACT

Primary familial brain calcification (PFBC) is a rare neurogenetic disorder with diverse neuropsychiatric expression. Mutations in four genes cause autosomal dominant PFBC: SLC20A2, XPR1, PDGFB and PDGFRB. Recently, biallelic mutations in the MYORG gene have been reported to cause PFBC with an autosomal recessive pattern of inheritance. We screened MYORG in 29 unrelated probands negatively screened for the autosomal dominant PFBC genes and identified 11 families with a biallelic rare or novel predicted damaging variant. We studied the clinical and radiological features of 16 patients of these 11 families and compared them to that of 102 autosomal dominant PFBC patients carrying a mutation in one of the four known autosomal dominant PFBC genes. We found that MYORG patients exhibited a high clinical penetrance with a median age of onset of 52 years (range: 21-62) with motor impairment at the forefront. In particular, dysarthria was the presenting sign in 11/16 patients. In contrast to patients with autosomal dominant PFBC, 12/15 (80%) symptomatic patients eventually presented at least four of the following five symptoms: dysarthria, cerebellar syndrome, gait disorder of any origin, akinetic-hypertonic syndrome and pyramidal signs. In addition to the most severe clinical pattern, MYORG patients exhibited the most severe pattern of calcifications as compared to the patients from the four autosomal dominant PFBC gene categories. Strikingly, 12/15 presented with brainstem calcifications in addition to extensive calcifications in other brain areas (lenticular nuclei, thalamus, cerebellar hemispheres, vermis, ±cortex). Among them, eight patients exhibited pontine calcifications, which were observed in none of the autosomal dominant PFBC patients and hence appeared to be highly specific. Finally, all patients exhibited cerebellar atrophy with diverse degrees of severity on CT scans. We confirmed the existence of cerebellar atrophy by performing MRI voxel-based morphometry analyses of MYORG patients with autosomal dominant PFBC mutation carriers as a comparison group. Of note, in three families, the father carried small pallido-dentate calcifications while carrying the mutation at the heterozygous state, suggesting a putative phenotypic expression in some heterozygous carriers. In conclusion, we confirm that MYORG is a novel major PFBC causative gene and that the phenotype associated with such mutations may be recognized based on pedigree, clinical and radiological features.


Subject(s)
Brain Diseases/genetics , Brain/pathology , Glycoside Hydrolases/genetics , Nervous System Malformations/genetics , Adult , Brain/metabolism , Calcinosis/genetics , Female , Heterozygote , Humans , Male , Middle Aged , Mutation/genetics , Pedigree , Phenotype , Xenotropic and Polytropic Retrovirus Receptor , Young Adult
10.
Hum Brain Mapp ; 40(7): 2125-2142, 2019 05.
Article in English | MEDLINE | ID: mdl-30653778

ABSTRACT

The execution of coordinated hand movements requires complex interactions between premotor and primary motor areas in the two hemispheres. The supplementary motor area (SMA) is involved in movement preparation and bimanual coordination. How the SMA controls bimanual coordination remains unclear, although there is evidence suggesting that the SMA could modulate interhemispheric interactions. With a delayed-response task, we investigated interhemispheric interactions underlying normal movement preparation and the role of the SMA in these interactions during the delay period of unimanual or bimanual hand movements. We used functional MRI and transcranial magnetic stimulation in 22 healthy volunteers (HVs), and then in two models of SMA dysfunction: (a) in the same group of HVs after transient disruption of the right SMA proper by continuous transcranial magnetic theta-burst stimulation; (b) in a group of 22 patients with congenital mirror movements (CMM), whose inability to produce asymmetric hand movements is associated with SMA dysfunction. In HVs, interhemispheric connectivity during the delay period was modulated according to whether or not hand coordination was required for the forthcoming movement. In HVs following SMA disruption and in CMM patients, interhemispheric connectivity was modified during the delay period and the interhemispheric inhibition was decreased. Using two models of SMA dysfunction, we showed that the SMA modulates interhemispheric interactions during movement preparation. This unveils a new role for the SMA and highlights its importance in coordinated movement preparation.


Subject(s)
Functional Laterality/physiology , Intention , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Movement/physiology , Psychomotor Performance/physiology , Adolescent , Adult , Evoked Potentials, Motor/physiology , Female , Healthy Volunteers , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Movement Disorders/diagnostic imaging , Movement Disorders/physiopathology , Transcranial Magnetic Stimulation/methods , Young Adult
12.
Hum Mutat ; 39(1): 23-39, 2018 01.
Article in English | MEDLINE | ID: mdl-29068161

ABSTRACT

The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Genes, DCC , Genetic Association Studies , Mutation , Phenotype , Agenesis of Corpus Callosum , Amino Acid Sequence , Binding Sites , Conserved Sequence , Databases, Genetic , Humans , Magnetic Resonance Imaging , Models, Molecular , Netrin-1/chemistry , Netrin-1/metabolism , Protein Binding , Protein Conformation , Protein Domains/genetics , Syndrome
13.
Mov Disord ; 33(11): 1700-1711, 2018 11.
Article in English | MEDLINE | ID: mdl-30338868

ABSTRACT

Whipple's disease, affecting the CNS, can cause a wide variety of symptoms. Movement disorders are very prevalent, and some are pathognomonic of the disease. This systematic review analyzed all published cases of movement disorders because of CNS Whipple's disease, providing detailed information on clinical and associated features. We have also attempted to address sources of confusion in the literature, particularly related to differing uses of the terminology of movement disorder. This comprehensive overview of Whipple's disease-induced movement disorders aims to aid neurologists in recognizing this very rare disorder and successfully reaching a laboratory-confirmed diagnosis in order to initiate appropriate therapy. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Movement Disorders/etiology , Ocular Motility Disorders/etiology , Whipple Disease/complications , Databases, Bibliographic , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Movement Disorders/diagnostic imaging , Movement Disorders/microbiology , Ocular Motility Disorders/diagnostic imaging , Ocular Motility Disorders/microbiology , Whipple Disease/diagnostic imaging
14.
Hum Mol Genet ; 24(25): 7159-70, 2015 Dec 20.
Article in English | MEDLINE | ID: mdl-26376866

ABSTRACT

DYT6 dystonia is caused by mutations in THAP1 [Thanatos-associated (THAP) domain-containing apoptosis-associated protein] and is autosomal dominant and partially penetrant. Like other genetic primary dystonias, DYT6 patients have no characteristic neuropathology, and mechanisms by which mutations in THAP1 cause dystonia are unknown. Thap1 is a zinc-finger transcription factor, and most pathogenic THAP1 mutations are missense and are located in the DNA-binding domain. There are also nonsense mutations, which act as the equivalent of a null allele because they result in the generation of small mRNA species that are likely rapidly degraded via nonsense-mediated decay. The function of Thap1 in neurons is unknown, but there is a unique, neuronal 50-kDa Thap1 species, and Thap1 levels are auto-regulated on the mRNA level. Herein, we present the first characterization of two mouse models of DYT6, including a pathogenic knockin mutation, C54Y and a null mutation. Alterations in motor behaviors, transcription and brain structure are demonstrated. The projection neurons of the deep cerebellar nuclei are especially altered. Abnormalities vary according to genotype, sex, age and/or brain region, but importantly, overlap with those of other dystonia mouse models. These data highlight the similarities and differences in age- and cell-specific effects of a Thap1 mutation, indicating that the pathophysiology of THAP1 mutations should be assayed at multiple ages and neuronal types and support the notion of final common pathways in the pathophysiology of dystonia arising from disparate mutations.


Subject(s)
Cerebellum/metabolism , DNA-Binding Proteins/metabolism , Dystonia Musculorum Deformans/metabolism , Dystonia Musculorum Deformans/pathology , Animals , DNA-Binding Proteins/genetics , Male , Mice , Mice, Mutant Strains , Mutation , RNA, Messenger/genetics
16.
Am J Hum Genet ; 90(2): 301-7, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22305526

ABSTRACT

Congenital mirror movements (CMM) are characterized by involuntary movements of one side of the body that mirror intentional movements on the opposite side. CMM reflect dysfunctions and structural abnormalities of the motor network and are mainly inherited in an autosomal-dominant fashion. Recently, heterozygous mutations in DCC, the gene encoding the receptor for netrin 1 and involved in the guidance of developing axons toward the midline, have been identified but CMM are genetically heterogeneous. By combining genome-wide linkage analysis and exome sequencing, we identified heterozygous mutations introducing premature termination codons in RAD51 in two families with CMM. RAD51 mRNA was significantly downregulated in individuals with CMM resulting from the degradation of the mutated mRNA by nonsense-mediated decay. RAD51 was specifically present in the developing mouse cortex and, more particularly, in a subpopulation of corticospinal axons at the pyramidal decussation. The identification of mutations in RAD51, known for its key role in the repair of DNA double-strand breaks through homologous recombination, in individuals with CMM reveals a totally unexpected role of RAD51 in neurodevelopment. These findings open a new field of investigation for researchers attempting to unravel the molecular pathways underlying bimanual motor control in humans.


Subject(s)
Congenital Abnormalities/genetics , Dyskinesias/genetics , Movement Disorders/genetics , Rad51 Recombinase/genetics , Axons , DCC Receptor , DNA Breaks, Double-Stranded , DNA Repair , Down-Regulation , Exome/genetics , Family Health , Genetic Heterogeneity , Genome-Wide Association Study/methods , Haploinsufficiency , Heterozygote , Homologous Recombination/genetics , Humans , Motor Cortex/abnormalities , Mutation/genetics , Nerve Growth Factors/genetics , Netrin-1 , Pedigree , RNA, Messenger/genetics , Receptors, Cell Surface/genetics , Tumor Suppressor Proteins/genetics
20.
Brain ; 136(Pt 11): 3333-46, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24056534

ABSTRACT

Mirror movements are involuntary symmetrical movements of one side of the body that mirror voluntary movements of the other side. Congenital mirror movement disorder is a rare condition characterized by mirror movements that persist throughout adulthood in subjects with no other clinical abnormalities. The affected individuals have mirror movements predominating in the muscles that control the fingers and are unable to perform purely unimanual movements. Congenital mirror movement disorder thus provides a unique paradigm for studying the lateralization of motor control. We conducted a multimodal, controlled study of patients with congenital mirror movements associated with RAD51 haploinsufficiency (n = 7, mean age 33.3 ± 16.8 years) by comparison with age- and gender-matched healthy volunteers (n = 14, mean age 33.9 ± 16.1 years). We showed that patients with congenital mirror movements induced by RAD51 deficiency had: (i) an abnormal decussation of the corticospinal tract; (ii) abnormal interhemispheric inhibition and bilateral cortical activation of primary motor areas during intended unimanual movements; and (iii) an abnormal involvement of the supplementary motor area during both unimanual and bimanual movements. The lateralization of motor control thus requires a fine interplay between interhemispheric communication and corticospinal wiring. This fine interplay determines: (i) the delivery of appropriate motor plans from the supplementary motor area to the primary motor cortex; (ii) the lateralized activation of the primary motor cortex; and (iii) the unilateral transmission of the motor command to the limb involved in the intended movement. Our results also unveil an unexpected function of RAD51 in corticospinal development of the motor system.


Subject(s)
Dyskinesias/physiopathology , Efferent Pathways/physiopathology , Hand/physiopathology , Motor Cortex/physiopathology , Rad51 Recombinase/genetics , Adolescent , Adult , Dyskinesias/congenital , Dyskinesias/genetics , Evoked Potentials, Motor , Female , Functional Laterality/physiology , Haploinsufficiency/genetics , Humans , Magnetoencephalography , Male , Middle Aged , Multimodal Imaging , Transcranial Magnetic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL