Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Pharm ; 20(4): 2150-2158, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36826437

ABSTRACT

This study addresses the question whether inductively coupled plasma mass spectrometry (ICP-MS) can be used as a method for the in vitro and in vivo characterization of non-radioactive metal conjugates to predict the properties of analogous radiopharmaceuticals. In a "proof-of-concept" study, the prostate-specific membrane antigen (PSMA)-targeting [175Lu]Lu-PSMA-617 and [159Tb]Tb-PSMA-617 were compared with their respective radiolabeled analogues, [177Lu]Lu-PSMA-617 (PLUVICTO, Novartis) and [161Tb]Tb-PSMA-617. ICP-MS and conventional γ-counting of the cell samples revealed almost identical results (<6% absolute difference between the two technologies) for the in vitro uptake and internalization of the (radio)metal conjugates, irrespective of the employed methodology. In vivo, an equal uptake in PSMA-positive PC-3 PIP tumor xenografts was determined 1 h after the injection of [175Lu]Lu-/[177Lu]Lu-PSMA-617 (41 ± 6% ID/g and 44 ± 12% IA/g, respectively) and [159Tb]Tb-/[161Tb]Tb-PSMA-617 (44 ± 5% ID/g and 44 ± 5% IA/g, respectively). It was further revealed that it is crucial to use the same ratios of the (radio)metal-labeled and unlabeled ligands for both methodologies to obtain equal data in organs in which receptor saturation was reached such as the kidneys (12 ± 2% ID/g vs 10 ± 1% IA/g, 1 h after injection). The data of this study demonstrate that the use of high-sensitivity ICP-MS allows reliable and predictive quantification of compounds labeled with stable metal isotopes in cell and tissue samples obtained in preclinical studies. It can, hence, be employed as a valid alternative to the state-of-the-art γ-counting methodology to detect radioactive ligands.


Subject(s)
Prostatic Neoplasms , Radiopharmaceuticals , Male , Humans , Radiopharmaceuticals/chemistry , Prostatic Neoplasms/pathology , Cell Line, Tumor , Antigens, Surface , Glutamate Carboxypeptidase II , Lutetium/chemistry , Heterocyclic Compounds, 1-Ring/chemistry
2.
Eur J Nucl Med Mol Imaging ; 49(2): 470-480, 2022 01.
Article in English | MEDLINE | ID: mdl-34402925

ABSTRACT

PURPOSE: Various preclinical study designs are described in the literature for the evaluation of PSMA radioligands. In this study, [177Lu]Lu-Ibu-DAB-PSMA, an albumin-binding radioligand, and [177Lu]Lu-PSMA-617 were investigated and compared under variable experimental conditions. METHODS: In vitro cell uptake studies were performed with PC-3 PIP and LNCaP tumor cells using a range of molar concentrations (0.75-500 nM) of both radioligands. Biodistribution and SPECT/CT imaging studies were carried out with the respective tumor mouse models using 0.05 nmol and 1.0 nmol injected ligand per mouse. RESULTS: In both tumor cell lines, the uptake of the radioligands was increased when using low molar concentrations of the respective ligand. The observed saturation effect at high ligand concentrations was more pronounced for LNCaP cells that express PSMA at lower levels than for PC-3 PIP cells. At all investigated timepoints, the in vivo uptake of both radioligands was higher in PC-3 PIP tumors than in LNCaP tumors. A low molar amount of injected ligand increased the PC-3 PIP tumor uptake mainly for [177Lu]Lu-Ibu-DAB-PSMA; however, the molar amount of ligand was relevant for both radioligands when using LNCaP tumors. Renal retention of both radioligands was, however, up to fourfold higher during the first hours after application of a low ligand amount compared to the high ligand amount. CONCLUSION: The results of this preclinical study underline the relevance of the tumor model and applied ligand amount for the characterization of PSMA radioligands. The application of equal preclinical study designs is crucial to allow the comparison of novel radioligands with existing ones and, thus, predict potential advantages of new radioligands in view of a clinical application.


Subject(s)
Antigens, Surface , Glutamate Carboxypeptidase II , Animals , Antigens, Surface/metabolism , Cell Line, Tumor , Glutamate Carboxypeptidase II/metabolism , Humans , Ligands , Male , Mice , Radiopharmaceuticals/chemistry , Single Photon Emission Computed Tomography Computed Tomography/methods , Tissue Distribution
3.
Eur J Nucl Med Mol Imaging ; 49(11): 3639-3650, 2022 09.
Article in English | MEDLINE | ID: mdl-35635566

ABSTRACT

[177Lu]Lu-Ibu-DAB-PSMA was previously characterized with moderate albumin-binding properties enabling high tumor accumulation but reasonably low retention in the blood. The aim of this study was to investigate [177Lu]Lu-Ibu-DAB-PSMA in preclinical in vivo experiments and compare its therapeutic efficacy and potential undesired side effects with those of [177Lu]Lu-PSMA-617 and the previously developed [177Lu]Lu-PSMA-ALB-56. BALB/c nude mice without tumors were investigated on Day 10 and 28 after injection of 10 MBq radioligand. It was revealed that most plasma parameters were in the same range for all groups of mice and histopathological examinations of healthy tissue did not show any alternations in treated mice as compared to untreated controls. Based on these results, a therapy study over twelve weeks was conducted with PC-3 PIP tumor-bearing mice for comparison of the radioligands's therapeutic efficacy up to an activity of 10 MBq (1 nmol) per mouse. In agreement with the increased mean absorbed tumor dose, [177Lu]Lu-Ibu-DAB-PSMA (~ 6.6 Gy/MBq) was more effective to inhibit tumor growth than [177Lu]Lu-PSMA-617 (~ 4.5 Gy/MBq) and only moderately less potent than [177Lu]Lu-PSMA-ALB-56 (~ 8.1 Gy/MBq). As a result, the survival of mice treated with 2 MBq of an albumin-binding radioligand was significantly increased (p < 0.05) compared to that of mice injected with [177Lu]Lu-PSMA-617 or untreated controls. The majority of mice treated with 5 MBq or 10 MBq [177Lu]Lu-Ibu-DAB-PSMA or [177Lu]Lu-PSMA-ALB-56 were still alive at study end. Hemograms of immunocompetent mice injected with 30 MBq [177Lu]Lu-Ibu-DAB-PSMA or 30 MBq [177Lu]Lu-PSMA-617 showed values in the same range as untreated controls. This was, however, not the case for mice treated with [177Lu]Lu-PSMA-ALB-56 which revealed a drop in lymphocytes and hemoglobin at Day 10 and Day 28 after injection. The data of this study demonstrated a significant therapeutic advantage of [177Lu]Lu-Ibu-DAB-PSMA over [177Lu]Lu-PSMA-617 and a more favorable safety profile as compared to that of [177Lu]Lu-PSMA-ALB-56. Based on these results, [177Lu]Lu-Ibu-DAB-PSMA may has the potential for a clinical translation.


Subject(s)
Prostatic Neoplasms , Albumins/therapeutic use , Animals , Cell Line, Tumor , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/therapeutic use , Lutetium/chemistry , Lutetium/therapeutic use , Male , Mice , Mice, Nude , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , Radiopharmaceuticals , Tissue Distribution
4.
Eur J Nucl Med Mol Imaging ; 49(4): 1113-1126, 2022 03.
Article in English | MEDLINE | ID: mdl-34625828

ABSTRACT

PURPOSE: The ߯-emitting terbium-161 also emits conversion and Auger electrons, which are believed to be effective in killing single cancer cells. Terbium-161 was applied with somatostatin receptor (SSTR) agonists that localize in the cytoplasm (DOTATOC) and cellular nucleus (DOTATOC-NLS) or with a SSTR antagonist that localizes at the cell membrane (DOTA-LM3). The aim was to identify the most favorable peptide/terbium-161 combination for the treatment of neuroendocrine neoplasms (NENs). METHODS: The capability of the 161Tb- and 177Lu-labeled somatostatin (SST) analogues to reduce viability and survival of SSTR-positive AR42J tumor cells was investigated in vitro. The radiopeptides' tissue distribution profiles were assessed in tumor-bearing mice. The efficacy of terbium-161 compared to lutetium-177 was investigated in therapy studies in mice using DOTATOC or DOTA-LM3, respectively. RESULTS: In vitro, [161Tb]Tb-DOTA-LM3 was 102-fold more potent than [177Lu]Lu-DOTA-LM3; however, 161Tb-labeled DOTATOC and DOTATOC-NLS were only 4- to fivefold more effective inhibiting tumor cell viability than their 177Lu-labeled counterparts. This result was confirmed in vivo and demonstrated that [161Tb]Tb-DOTA-LM3 was significantly more effective in delaying tumor growth than [177Lu]Lu-DOTA-LM3, thereby, prolonging survival of the mice. A therapeutic advantage of terbium-161 over lutetium-177 was also manifest when applied with DOTATOC. Since the nuclear localizing sequence (NLS) compromised the in vivo tissue distribution of DOTATOC-NLS, it was not used for therapy. CONCLUSION: The use of membrane-localizing DOTA-LM3 was beneficial and profited from the short-ranged electrons emitted by terbium-161. Based on these preclinical data, [161Tb]Tb-DOTA-LM3 may outperform the clinically employed [177Lu]Lu-DOTATOC for the treatment of patients with NENs.


Subject(s)
Neuroendocrine Tumors , Receptors, Somatostatin , Animals , Humans , Mice , Neuroendocrine Tumors/pathology , Octreotide , Radioisotopes , Receptors, Somatostatin/metabolism , Terbium/therapeutic use , Tissue Distribution
5.
Mol Pharm ; 19(3): 963-973, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35192367

ABSTRACT

Tumor targeting using folate radioconjugates is a promising strategy for theragnostics of folate receptor-positive tumors. The aim of this study was to investigate the impact of structural modifications of folate radioconjugates on their pharmacokinetic properties. Four novel folate radioconjugates ([177Lu]Lu-OxFol-2, [177Lu]Lu-OxFol-3, [177Lu]Lu-OxFol-4, and [177Lu]Lu-OxFol-5), modified with a lipophilic or hydrophilic linker entity in close proximity to the albumin-binding 4-(p-iodophenyl)butanoate entity or the DOTA chelator, respectively, were designed and evaluated for comparison with the previously developed [177Lu]Lu-OxFol-1. A hydrophobic 4-(aminomethyl)benzoic acid linker, incorporated in close proximity to the 4-(p-iodophenyl)butanoate entity, enhanced the albumin-binding properties (relative affinity 7.3) of [177Lu]Lu-OxFol-3 as compared to those of [177Lu]Lu-OxFol-1 (relative affinity set as 1.0). On the other hand, a hydrophilic d-glutamic acid (d-Glu) linker entity used in [177Lu]Lu-OxFol-2 compromised the albumin-binding properties. [177Lu]Lu-OxFol-4 and [177Lu]Lu-OxFol-5, in which the respective linker entities were incorporated adjacent to the DOTA chelator, showed similar albumin-binding properties (0.6 and 1.0, respectively) as [177Lu]Lu-OxFol-1. Biodistribution studies in KB tumor-bearing nude mice revealed twofold higher tumor-to-kidney ratios at 4 h and 24 h after injection of [177Lu]Lu-OxFol-3 (∼1.2) than after injection of [177Lu]Lu-OxFol-1 (∼0.6). The tumor-to-kidney ratios of [177Lu]Lu-OxFol-2 were, however, much lower (∼0.2) due to the high kidney retention of this radioconjugate. The tumor-to-kidney ratios of [177Lu]Lu-OxFol-5 were only slightly increased (∼0.9), and the ratios for [177Lu]Lu-OxFol-4 (∼0.7) were in the same range as for [177Lu]Lu-OxFol-1. SPECT/CT imaging studies demonstrated similar tumor uptake of all radioconjugates but a clearly improved tumor-to-kidney ratio for [177Lu]Lu-OxFol-3 as compared to that for [177Lu]Lu-OxFol-1. Based on these data, it can be concluded that the linker entity in close proximity to the 4-(p-iodophenyl)butanoate entity affects the radioconjugate's pharmacokinetic profile considerably due to the altered affinity to albumin. Changes in the linker entity, which connects the DOTA chelator with the folate molecule, do not have a major impact on the radioconjugate's tissue distribution profile, however. As a result of these findings, [177Lu]Lu-OxFol-3 had a comparable therapeutic effect to that of [177Lu]Lu-OxFol-1 but appeared advantageous in preventing kidney damage. Provided that the kidneys will present the dose-limiting organs in patients, [177Lu]Lu-OxFol-3 would be the preferred candidate for a clinical translation.


Subject(s)
Folic Acid , Lutetium , Albumins/chemistry , Animals , Cell Line, Tumor , Chelating Agents , Folic Acid/chemistry , Humans , Lutetium/chemistry , Mice , Mice, Nude , Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Tissue Distribution
6.
Mol Pharm ; 19(7): 2105-2114, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35544699

ABSTRACT

[177Lu]Lu-Ibu-DAB-PSMA, a radioligand modified with ibuprofen as the albumin binder, showed higher accumulation in PSMA-positive tumors of mice than the clinically used [177Lu]Lu-PSMA-617 but lower retention in non-targeted tissues than previously developed albumin-binding PSMA radioligands. The aim of this study was to investigate whether the stereochemistry of the incorporated ibuprofen affects the radioligand's in vitro and in vivo properties and to select the more favorable radioligand for further development. For this purpose, SibuDAB and RibuDAB containing (S)- and (R)-ibuprofen, respectively, were synthesized and labeled with lutetium-177. In vitro, the two isomers had similar properties; however, [177Lu]Lu-SibuDAB showed increased binding to mouse and human plasma proteins (91 ± 1 and 88 ± 2%, respectively) compared to [177Lu]Lu-RibuDAB (75 ± 2 and 79 ± 2%, respectively). In vivo, [177Lu]Lu-SibuDAB was metabolically more stable than [177Lu]Lu-RibuDAB with ∼90 vs ∼67% intact radioligand detected in the blood at 4 h post injection (p.i.). In line with the lower albumin-binding affinity, the blood clearance of [177Lu]Lu-RibuDAB in mice was considerably faster [27% of injected activity (% IA), 1 h p.i.] than for [177Lu]Lu-SibuDAB (50% IA, 1 h p.i.). Time-dependent biodistribution studies performed in tumor-bearing athymic nude mice showed high PSMA-specific tumor uptake for both isomers. A twofold increased area under the curve (AUC0→8d) of the blood retention was determined for [177Lu]Lu-SibuDAB as compared to [177Lu]Lu-RibuDAB, whereas the kidney AUC0→8d value of [177Lu]Lu-SibuDAB was only half as high as for [177Lu]Lu-RibuDAB. As a result, a more favorable tumor-to-kidney AUC0→8d ratio was obtained for [177Lu]Lu-SibuDAB, which was also visualized on SPECT/CT images. Based on its improved kidney clearance and higher metabolic stability, [177Lu]Lu-SibuDAB was selected as the more favorable radioligand. Therapy studies performed with [177Lu]Lu-SibuDAB (5 MBq/mouse) demonstrated the anticipated therapeutic superiority over the current gold-standard [177Lu]Lu-PSMA-617 (5 MBq/mouse). The significantly increased survival time of mice treated with [177Lu]Lu-SibuDAB as compared to those injected with [177Lu]Lu-PSMA-617 justifies further development of this novel radioligand toward clinical application.


Subject(s)
Glutamate Carboxypeptidase II , Prostatic Neoplasms , Albumins/chemistry , Animals , Antigens, Surface/metabolism , Cell Line, Tumor , Glutamate Carboxypeptidase II/metabolism , Humans , Ibuprofen , Lutetium/chemistry , Male , Mice , Mice, Nude , Prostatic Neoplasms/metabolism , Radiopharmaceuticals/chemistry , Tissue Distribution
7.
Drug Chem Toxicol ; 45(2): 560-567, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32106715

ABSTRACT

Inhalation of xenobiotics during manufacture process in chrome plating bath produce hazards to workers' health. Chromium (Cr) is a metal widely used by industry, and its hexavalent (VI) form has been classified as mutagenic and carcinogenic. This study aimed to evaluate the occupational risk of exposure to metals in chrome plating workers. Biological monitoring was performed through quantification of Cr, Pb, As, Ni, and V in blood by ICP-MS in 50 male chrome-plating workers from the exposed group and 50 male non-exposed workers. The inflammatory parameters assessed were ß-2 integrin, intercellular adhesion molecule-1 (ICAM-1), and L-selectin expression in lymphocytes. The genotoxicity was evaluated with comet and micronucleus (MN) assays and as a biomarker of oxidative damage the lipid peroxidation (MDA) and protein carbonyl (PCO). The results demonstrated that Cr levels in blood and urine were increased in the exposed group compared to the non-exposed group. Although the biomarkers of exposure proved to be within the levels considered safe in exposed individuals, chrome plating workers presented significantly increase in the percentage of lymphocytes expressing ß-2 integrin, ICAM-1, and L-selectin as well as DNA damage (comet assay) and plasmatic MDA and PCO levels. Therefore, it is possible also assign the injuries caused to lipids, proteins, and DNA assessed due to the increased presence of other metals such as Pb, As, Ni, and V in exposed subjects. These results suggest that exposure to xenobiotics present in the occupational environment in chrome plating industry could play a crucial role toward the inflammation, genetic, and oxidative damage.


Subject(s)
Occupational Exposure , Chromium/toxicity , Chromium/urine , Comet Assay , Humans , Male , Metals , Occupational Exposure/adverse effects , Risk Assessment
8.
Bioconjug Chem ; 32(8): 1617-1628, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34251183

ABSTRACT

The folate receptor (FR) is an interesting target for radiotheranostics due to its overexpression in several tumor types. The progress in developing novel folate radioconjugates is, however, slow due to the synthetic challenges that folate chemistry presents. The goal of this study was, thus, to establish versatile solid-phase synthetic strategies for a convenient preparation of novel folate conjugates. Two approaches were established based on an orthogonal fluorenylmethyloxycarbonyl (Fmoc)-protection strategy to enable a modular buildup of an albumin-binding DOTA conjugate (known as OxFol-1) using folic acid (oxidized folate version) as a targeting agent. The main difference between the two approaches was the sequence of conjugating the single structural units. The approach that introduced the folate entity as the last unit appeared particularly useful for the preparation of conjugates based on 6R- or 6S-5-methyltetrahydrofolic acid (5-MTHF; a reduced folate version) as targeting entity. Three types of folate conjugates were synthesized either with a p-iodophenyl-based albumin binder (OxFol-1, 6R-RedFol-1, and 6S-RedFol-1) or without an albumin-binding entity (OxFol-14, 6R-RedFol-14, and 6S-RedFol-14). All six conjugates were obtained with high chemical purity (>98%) after 9-13 synthesis steps and a single final HPLC purification. Radiolabeling with lutetium-177 was feasible at high molar activity, and the resulting radioconjugates were stable over at least 24 h. Biodistribution and SPECT/CT imaging studies confirmed the favorable effect of an albumin-binding entity to increase the tumor uptake and reduce kidney retention of folate radioconjugates. The increased tumor-to-kidney ratios obtained with [177Lu]Lu-6R-RedFol-1 and [177Lu]Lu-6S-RedFol-1 as compared to [177Lu]Lu-OxFol-1 indicated that 5-MTHF is the preferred FR-targeting agent for albumin-binding radioconjugates. This was, however, not the case for folate radioconjugates without an albumin binder. Thanks to the established synthesis strategy, the preparation of further folate radioconjugates will be facilitated, potentially enabling the optimization of the tissue distribution characteristics even more.


Subject(s)
Folic Acid/chemistry , Neoplasms/diagnostic imaging , Animals , Chemistry Techniques, Synthetic , Female , Folic Acid/chemical synthesis , Folic Acid/pharmacokinetics , Humans , Lutetium/chemistry , Lutetium/pharmacokinetics , Mice , Mice, Nude , Neoplasms/therapy , Radioisotopes/chemistry , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Single Photon Emission Computed Tomography Computed Tomography/methods
9.
Eur J Nucl Med Mol Imaging ; 48(4): 984-994, 2021 04.
Article in English | MEDLINE | ID: mdl-33078260

ABSTRACT

PURPOSE: It was previously demonstrated that radiation effects can enhance the therapy outcome of immune checkpoint inhibitors. In this study, a syngeneic breast tumor mouse model was used to investigate the effect of [177Lu]Lu-DOTA-folate as an immune stimulus to enhance anti-CTLA-4 immunotherapy. METHODS: In vitro and in vivo studies were performed to characterize NF9006 breast tumor cells with regard to folate receptor (FR) expression and the possibility of tumor targeting using [177Lu]Lu-DOTA-folate. A preclinical therapy study was performed over 70 days with NF9006 tumor-bearing mice that received vehicle only (group A); [177Lu]Lu-DOTA-folate (5 MBq; 3.5 Gy absorbed tumor dose; group B); anti-CTLA-4 antibody (3 × 200 µg; group C), or both agents (group D). The mice were monitored regarding tumor growth over time and signs indicating adverse events of the treatment. RESULTS: [177Lu]Lu-DOTA-folate bound specifically to NF9006 tumor cells and tissue in vitro and accumulated in NF9006 tumors in vivo. The treatment with [177Lu]Lu-DOTA-folate or an anti-CTLA-4 antibody had only a minor effect on NF9006 tumor growth and did not substantially increase the median survival time of mice (23 day and 19 days, respectively) as compared with untreated controls (12 days). [177Lu]Lu-DOTA-folate sensitized, however, the tumors to anti-CTLA-4 immunotherapy, which became obvious by reduced tumor growth and, hence, a significantly improved median survival time of mice (> 70 days). No obvious signs of adverse effects were observed in treated mice as compared with untreated controls. CONCLUSION: Application of [177Lu]Lu-DOTA-folate had a positive effect on the therapy outcome of anti-CTLA-4 immunotherapy. The results of this study may open new perspectives for future clinical translation of folate radioconjugates.


Subject(s)
Lutetium , Neoplasms , Animals , Cell Line, Tumor , Folic Acid , Immunotherapy , Lutetium/therapeutic use , Mice , Radioisotopes , Radiopharmaceuticals
10.
Eur J Nucl Med Mol Imaging ; 48(4): 972-983, 2021 04.
Article in English | MEDLINE | ID: mdl-33063250

ABSTRACT

PURPOSE: The folate receptor (FR) is frequently overexpressed in a variety of tumor types and, hence, an interesting target for radionuclide therapy. The aim of this study was to evaluate a new class of albumin-binding radioconjugates comprising 5-methyltetrahydrofolate (5-MTHF) as a targeting agent and to compare their properties with those of the previously established folic acid-based [177Lu]Lu-OxFol-1. METHODS: [177Lu]Lu-6R-RedFol-1 and [177Lu]Lu-6S-RedFol-1 were investigated in vitro using FR-positive KB tumor cells. Biodistribution studies were performed in KB tumor-bearing mice, and the areas under the curve (AUC0 → 120h) were determined for the uptake in tumors and kidneys. [177Lu]Lu-6R-RedFol-1 was compared with [177Lu]Lu-OxFol-1 in a therapy study over 8 weeks using KB tumor-bearing mice. RESULTS: Both radioconjugates demonstrated similar in vitro properties as [177Lu]Lu-OxFol-1; however, the tumor uptake of [177Lu]Lu-6R-RedFol-1 and [177Lu]Lu-6S-RedFol-1 was significantly increased in comparison with [177Lu]Lu-OxFol-1. In the case of [177Lu]Lu-6S-RedFol-1, also the kidney uptake was increased; however, renal retention of [177Lu]Lu-6R-RedFol-1 was similar to that of [177Lu]Lu-OxFol-1. This led to an almost 4-fold increased tumor-to-kidney AUC0 → 120h ratio of [177Lu]Lu-6R-RedFol-1 as compared with [177Lu]Lu-6S-RedFol-1 and [177Lu]Lu-OxFol-1. At equal activity, the therapeutic effect of [177Lu]Lu-6R-RedFol-1 was better than that of [177Lu]Lu-OxFol-1, reflected by a slower tumor growth and, consequently, an increased median survival time (49 days vs. 34 days). CONCLUSION: This study demonstrated the promising potential of 5-MTHF-based radioconjugates for FR-targeting. Application of [177Lu]Lu-6R-RedFol-1 resulted in unprecedentedly high tumor-to-kidney ratios and, as a consequence, a superior therapeutic effect as compared with [177Lu]Lu-OxFol-1. These findings, together with the absence of early side effects, make [177Lu]Lu-6R-RedFol-1 attractive in view of a future clinical translation.


Subject(s)
Folic Acid , Radiopharmaceuticals , Animals , Cell Line, Tumor , Lutetium/therapeutic use , Mice , Radioisotopes/therapeutic use , Radiopharmaceuticals/therapeutic use , Tetrahydrofolates , Tissue Distribution
11.
Eur J Nucl Med Mol Imaging ; 48(3): 893-903, 2021 03.
Article in English | MEDLINE | ID: mdl-32949253

ABSTRACT

INTRODUCTION: PSMA-targeted radionuclide therapy with lutetium-177 has emerged as an effective treatment option for metastatic, castration-resistant prostate cancer (mCRPC). Recently, the concept of modifying PSMA radioligands with an albumin-binding entity was demonstrated as a promising measure to increase the tumor uptake in preclinical experiments. The aim of this study was to translate the concept to a clinical setting and evaluate the safety and dosimetry of [177Lu]Lu-PSMA-ALB-56, a novel PSMA radioligand with albumin-binding properties. METHODS: Ten patients (71.8 ± 8.2 years) with mCRPC received an activity of 3360 ± 393 MBq (120-160 µg) [177Lu]Lu-PSMA-ALB-56 followed by whole-body SPECT/CT imaging over 7 days. Volumes of interest were defined on the SPECT/CT images for dosimetric evaluation for healthy tissue and tumor lesions. General safety and therapeutic efficacy were assessed by measuring blood biomarkers. RESULTS: [177Lu]Lu-PSMA-ALB-56 was well tolerated, and no severe adverse events were observed. SPECT images revealed longer circulation of [177Lu]Lu-PSMA-ALB-56 in the blood with the highest uptake in tumor lesions at 48 h post injection. Compared with published data for other therapeutic PSMA radioligands (e.g. PSMA-617 and PSMA I&T), normalized absorbed doses of [177Lu]Lu-PSMA-ALB-56 were up to 2.3-fold higher in tumor lesions (6.64 ± 6.92 Gy/GBq) and similar in salivary glands (0.87 ± 0.43 Gy/GBq). Doses to the kidneys and red marrow (2.54 ± 0.94 Gy/GBq and 0.29 ± 0.07 Gy/GBq, respectively) were increased. CONCLUSION: Our data demonstrated that the concept of albumin-binding PSMA-radioligands is feasible and leads to increased tumor doses. After further optimization of the ligand design, the therapeutic outcomes may be improved for patients with prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Albumins , Dipeptides , Heterocyclic Compounds, 1-Ring , Humans , Ligands , Male , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Radiopharmaceuticals/therapeutic use , Tissue Distribution
12.
Mol Pharm ; 17(6): 2044-2053, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32383887

ABSTRACT

The strategy of using radioligands for targeting the prostate-specific membrane antigen (PSMA) revealed to be promising for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Recently developed albumin-binding PSMA radioligands showed a remarkably increased tumor uptake because of the enhanced blood circulation, but higher accumulation of activity was also observed in off-target organs and tissues. The aim of this study was to investigate the option of using fast-cleared, small-molecular-weight PSMA inhibitors (PSMA-11, 2-PMPA, and ZJ-43) to reduce the kidney uptake of [177Lu]Lu-PSMA-ALB-56, a previously developed albumin-binding PSMA radioligand. Dual-isotope SPECT/CT imaging was performed with tumor-bearing mice coinjected with [177Lu]Lu-PSMA-ALB-56 and a 2.5-fold molar excess of [67Ga]Ga-PSMA-11. At early timepoints after injection, the high renal uptake of [67Ga]Ga-PSMA-11 reduced the accumulation of [177Lu]Lu-PSMA-ALB-56 in the kidneys substantially, whereas the tumor uptake of [177Lu]Lu-PSMA-ALB-56 was only slightly affected. These findings were confirmed in biodistribution studies, which revealed reduced uptake of [177Lu]Lu-PSMA-ALB-56 in the kidneys due to coadministered unlabeled PSMA-11 (9.1 ± 0.8% IA/g vs 46 ± 11% IA/g; 1 h p.i.). The tumor uptake of [177Lu]Lu-PSMA-ALB-56 was almost the same at 1 h p.i., irrespective of whether or not PSMA-11 was coinjected (24 ± 6% IA/g vs 27 ± 7% IA/g). The application of [177Lu]Lu-PSMA-ALB-56 with 2-PMPA or ZJ-43, respectively, showed similar results in biodistribution studies. Among all three tested PSMA inhibitors, 2-PMPA, applied at a 2.5-fold molar excess relative to [177Lu]Lu-PSMA-ALB-56, was most effective to improve the tumor-to-kidney ratios over the first hours after injection of [177Lu]Lu-PSMA-ALB-56. The concept of using a PSMA inhibitor together with [177Lu]Lu-PSMA-ALB-56 appears promising in view of a clinical translation of this and possibly other long-circulating PSMA radioligands.


Subject(s)
Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacokinetics , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Humans , Kidney/metabolism , Male , Single Photon Emission Computed Tomography Computed Tomography
13.
Recent Results Cancer Res ; 216: 227-282, 2020.
Article in English | MEDLINE | ID: mdl-32594389

ABSTRACT

Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g., peptide, antibody fragment) and a γ-radiation-emitting radionuclide (e.g., 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design, these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.


Subject(s)
Neoplasms/diagnostic imaging , Tomography, Emission-Computed, Single-Photon , Humans , Radiopharmaceuticals
14.
Inorg Chem ; 59(16): 11736-11748, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32799456

ABSTRACT

A family of three picolinate pyclen-based ligands, previously investigated for the complexation of Y3+ and some lanthanide ions (Gd3+, Eu3+), was studied with 161Tb and 177Lu in view of potential radiotherapeutic applications. The set of six Tb3+ and Lu3+ complexes was synthesized and fully characterized. The coordination properties in the solid state and in solution were thoroughly studied. Potentiometric titrations, supported by density functional theory (DFT) calculations, showed the very high stability constants of the Tb3+ and Lu3+ complexes, associated with remarkable kinetic inertness for up to 30 days in 1 M HCl. A complete radiolabeling study performed with both 161Tb and 177Lu radionuclides, including experiments with regard to the stability with and without scavengers and kinetic inertness using challenging agents, proved that the ligands could reasonably compete with the DOTA analogue. To conclude, the potential of using the same ligand for both radiotherapy and optical imaging was highlighted for the first time.


Subject(s)
Azabicyclo Compounds/chemistry , Chelating Agents/chemistry , Lanthanoid Series Elements/chemistry , Picolinic Acids/chemistry , Precision Medicine , Ligands , Magnetic Resonance Spectroscopy , Molecular Structure
15.
Molecules ; 25(11)2020 May 29.
Article in English | MEDLINE | ID: mdl-32486054

ABSTRACT

The concept of using ibuprofen as an albumin-binding entity was recently demonstrated by the development of [177Lu]Lu-Ibu-PSMA-01. In the present study, we designed a novel ibuprofen-containing radioligand (Ibu-PSMA-02) with subtle structural changes regarding the linker entity in order to investigate a potential impact on the in vitro and in vivo properties. Ibu-PSMA-02 was prepared using solid-phase synthesis techniques and labeled with lutetium-177. [177Lu]Lu-Ibu-PSMA-02 was evaluated in vitro with regard to its plasma protein-binding properties, PSMA affinity and uptake into PSMA-expressing PC-3 PIP tumor cells. The tissue distribution profile of [177Lu]Lu-Ibu-PSMA-02 was assessed in tumor-bearing mice and dose estimations were performed. The in vitro characteristics of [177Lu]Lu-Ibu-PSMA-02 were similar to those previously obtained for [177Lu]Lu-Ibu-PSMA-01 with respect to plasma protein-binding, PSMA affinity and tumor cell uptake. The in vivo studies revealed, however, an unprecedentedly high uptake of [177Lu]Lu-Ibu-PSMA-02 in PC-3 PIP tumors, resulting in an increased absorbed tumor dose of 7.7 Gy/MBq as compared to 5.1 Gy/MBq calculated for [177Lu]Lu-Ibu-PSMA-01. As a consequence of the high tumor accumulation, [177Lu]Lu-Ibu-PSMA-02 showed higher tumor-to-background ratios than [177Lu]Lu-Ibu-PSMA-01. This study exemplified that smallest structural changes in the linker entity of PSMA radioligands may have a significant impact on their pharmacokinetic profiles and, thus, may be applied as a means for ligand design optimization.


Subject(s)
Albumins/chemistry , Antigens, Surface/chemistry , Chemistry Techniques, Synthetic/methods , Glutamate Carboxypeptidase II/chemistry , Prostatic Neoplasms/metabolism , Animals , Blood Proteins/chemistry , Cell Line, Tumor , Female , Kinetics , Ligands , Lutetium , Male , Mice , Mice, Inbred BALB C , Protein Binding , Radioisotopes , Radiometry , Radiopharmaceuticals/chemistry , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed
16.
Molecules ; 25(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066650

ABSTRACT

44Sc has favorable properties for cancer diagnosis using Positron Emission Tomography (PET) making it a promising candidate for application in nuclear medicine. The implementation of its production with existing compact medical cyclotrons would mean the next essential milestone in the development of this radionuclide. While the production and application of 44Sc has been comprehensively investigated, the development of specific targetry and irradiation methods is of paramount importance. As a result, the target was optimized for the 44Ca(p,n)44Sc nuclear reaction using CaO instead of CaCO3, ensuring decrease in target radioactive degassing during irradiation and increased radionuclidic yield. Irradiations were performed at the research cyclotron at the Paul Scherrer Institute (~11 MeV, 50 µA, 90 min) and the medical cyclotron at the University of Bern (~13 MeV, 10 µA, 240 min), with yields varying from 200 MBq to 16 GBq. The development of targetry, chemical separation as well as the practical issues and implications of irradiations, are analyzed and discussed. As a proof-of-concept study, the 44Sc produced at the medical cyclotron was used for a preclinical study using a previously developed albumin-binding prostate-specific membrane antigen (PSMA) ligand. This work demonstrates the feasibility to produce 44Sc with high yields and radionuclidic purity using a medical cyclotron, equipped with a commercial solid target station.


Subject(s)
Cyclotrons , Positron-Emission Tomography/methods , Radioisotopes , Scandium , Albumins/metabolism , Animals , Antigens, Surface , Calcium Compounds/chemistry , Cation Exchange Resins/chemistry , Equipment Design , Female , Glutamate Carboxypeptidase II , Helium/chemistry , Humans , Isotope Labeling/methods , Mice, Nude , Neoplasms, Experimental/diagnostic imaging , Oxides/chemistry , Proof of Concept Study , Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Scandium/chemistry , Xenograft Model Antitumor Assays
17.
Chimia (Aarau) ; 74(12): 939-945, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33357286

ABSTRACT

The concept of targeted radionuclide therapy (TRT) is the accurate and efficient delivery of radiation to disseminated cancer lesions while minimizing damage to healthy tissue and organs. Critical aspects for successful development of novel radiopharmaceuticals for TRT are: i) the identification and characterization of suitable targets expressed on cancer cells; ii) the selection of chemical or biological molecules which exhibit high affinity and selectivity for the cancer cell-associated target; iii) the selection of a radionuclide with decay properties that suit the properties of the targeting molecule and the clinical purpose. The Center for Radiopharmaceutical Sciences (CRS) at the Paul Scherrer Institute in Switzerland is privileged to be situated close to unique infrastructure for radionuclide production (high energy accelerators and a neutron source) and access to C/B-type laboratories including preclinical, nuclear imaging equipment and Swissmedic-certified laboratories for the preparation of drug samples for human use. These favorable circumstances allow production of non-standard radionuclides, exploring their biochemical and pharmacological features and effects for tumor therapy and diagnosis, while investigating and characterizing new targeting structures and optimizing these aspects for translational research on radiopharmaceuticals. In close collaboration with various clinical partners in Switzerland, the most promising candidates are translated to clinics for 'first-in-human' studies. This article gives an overview of the research activities at CRS in the field of TRT by the presentation of a few selected projects.


Subject(s)
Neoplasms , Radiopharmaceuticals , Humans , Neoplasms/drug therapy , Neoplasms/radiotherapy , Radioisotopes , Switzerland , Translational Research, Biomedical
18.
Prostate ; 79(12): 1450-1456, 2019 09.
Article in English | MEDLINE | ID: mdl-31233227

ABSTRACT

BACKGROUND: Prostate-specific membrane antigen (PSMA)-based imaging and therapy are increasingly used in the management of prostate cancer. However, low PSMA surface expression in certain patients is a limitation for PSMA-based technologies. We have previously shown that high doses of dutasteride, a 5α-reductase inhibitor generally used for the treatment of benign prostatic enlargement, increase the PSMA expression in vitro. We now further analyzed the concentration- and time-dependent effects of dutasteride in LNCaP cells. METHODS: Androgen receptor (AR) expressing prostate cancer cells (LNCaP) were treated for 7 to 14 days with vehicle control (0.1% dimethyl sulfoxide) or different concentrations of dutasteride (0.25 , 0.5 , 1 , and 5 µM). In addition to cell proliferation, PSMA surface expression was assessed using flow cytometry (FACS) and immunocytochemistry. Total PSMA and AR expression was analyzed by capillary western immunoassay (WES). In addition, tumor cell uptake and internalization assays of 177 Lu-PSMA-617 were performed. RESULTS: Dutasteride treatment resulted in a significant upregulation of PSMA surface expression compared to vehicle control after 7 days in all tested concentrations. After 14 days a further, concentration-dependent increase of PSMA surface expression was detectable. Total PSMA protein expression significantly increased after treatment of cells with high concentrations of dutasteride using 5 µM for 7 or 14 days. However, when lower concentrations were used total PSMA expression was not significantly altered compared to vehicle control. Further testing revealed a dose-dependent increase in uptake and internalization of 177Lu -PSMA-617 after 7 and 14 days. Though, a significantly increased uptake was only observed using a 5 µM dutasteride concentration for 7 days as well as 1 and 5 µM for 14 days. CONCLUSION: Our investigations revealed a concentration- and time-dependent effect of dutasteride on PSMA expression and uptake of 177Lu -PSMA-617 in LNCaP cells. A short-term treatment of patients with high doses of dutasteride might increase the detection rate of PSMA-based imaging and increase the effect of 177Lu -PSMA-617 therapy via upregulation of PSMA expression.


Subject(s)
5-alpha Reductase Inhibitors/pharmacology , Antigens, Surface/biosynthesis , Dutasteride/pharmacology , Glutamate Carboxypeptidase II/biosynthesis , Prostate/drug effects , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Dipeptides/metabolism , Dose-Response Relationship, Drug , Heterocyclic Compounds, 1-Ring/metabolism , Humans , Lutetium/metabolism , Male , Prostate/metabolism , Prostate-Specific Antigen , Radioisotopes/metabolism , Receptors, Androgen/biosynthesis , Up-Regulation
19.
Eur J Nucl Med Mol Imaging ; 46(9): 1919-1930, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31134301

ABSTRACT

PURPOSE: The prostate-specific membrane antigen (PSMA) has emerged as an interesting target for radionuclide therapy of metastasized castration-resistant prostate cancer (mCRPC). The aim of this study was to investigate 161Tb (T1/2 = 6.89 days; Eß͞av = 154 keV) in combination with PSMA-617 as a potentially more effective therapeutic alternative to 177Lu-PSMA-617, due to the abundant co-emission of conversion and Auger electrons, resulting in an improved absorbed dose profile. METHODS: 161Tb was used for the radiolabeling of PSMA-617 at high specific activities up to 100 MBq/nmol. 161Tb-PSMA-617 was tested in vitro and in tumor-bearing mice to confirm equal properties, as previously determined for 177Lu-PSMA-617. The effects of 161Tb-PSMA-617 and 177Lu-PSMA-617 on cell viability (MTT assay) and survival (clonogenic assay) were compared in vitro using PSMA-positive PC-3 PIP tumor cells. 161Tb-PSMA-617 was further investigated in therapy studies using PC-3 PIP tumor-bearing mice. RESULTS: 161Tb-PSMA-617 and 177Lu-PSMA-617 displayed equal in-vitro properties and tissue distribution profiles in tumor-bearing mice. The viability and survival of PC-3 PIP tumor cells were more reduced when exposed to 161Tb-PSMA-617 as compared to the effect obtained with the same activities of 177Lu-PSMA-617 over the whole investigated concentration range. Treatment of mice with 161Tb-PSMA-617 (5.0 MBq/mouse and 10 MBq/mouse, respectively) resulted in an activity-dependent increase of the median survival (36 vs 65 days) compared to untreated control animals (19 days). Therapy studies to compare the effects of 161Tb-PSMA-617 and 177Lu-PSMA-617 indicated the anticipated superiority of 161Tb over 177Lu. CONCLUSION: 161Tb-PSMA-617 showed superior in-vitro and in-vivo results as compared to 177Lu-PSMA-617, confirming theoretical dose calculations that indicate an additive therapeutic effect of conversion and Auger electrons in the case of 161Tb. These data warrant more preclinical research for in-depth investigations of the proposed concept, and present a basis for future clinical translation of 161Tb-PSMA-617 for the treatment of mCRPC.


Subject(s)
Dipeptides/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Radioisotopes/therapeutic use , Terbium/therapeutic use , Animals , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Dipeptides/pharmacokinetics , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Humans , Male , Mice , PC-3 Cells , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Single Photon Emission Computed Tomography Computed Tomography , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL