Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(19): 5053-5069.e23, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34390642

ABSTRACT

Genetic perturbations of cortical development can lead to neurodevelopmental disease, including autism spectrum disorder (ASD). To identify genomic regions crucial to corticogenesis, we mapped the activity of gene-regulatory elements generating a single-cell atlas of gene expression and chromatin accessibility both independently and jointly. This revealed waves of gene regulation by key transcription factors (TFs) across a nearly continuous differentiation trajectory, distinguished the expression programs of glial lineages, and identified lineage-determining TFs that exhibited strong correlation between linked gene-regulatory elements and expression levels. These highly connected genes adopted an active chromatin state in early differentiating cells, consistent with lineage commitment. Base-pair-resolution neural network models identified strong cell-type-specific enrichment of noncoding mutations predicted to be disruptive in a cohort of ASD individuals and identified frequently disrupted TF binding sites. This approach illustrates how cell-type-specific mapping can provide insights into the programs governing human development and disease.


Subject(s)
Cerebral Cortex/embryology , Chromatin/metabolism , Gene Expression Regulation, Developmental , Single-Cell Analysis , Astrocytes/cytology , Cell Differentiation , Cell Lineage/genetics , Cluster Analysis , Deep Learning , Epigenesis, Genetic , Fuzzy Logic , Glutamates/metabolism , Humans , Mutation/genetics , Neurons/metabolism , Regulatory Sequences, Nucleic Acid/genetics
2.
N Engl J Med ; 390(8): 687-700, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38381673

ABSTRACT

BACKGROUND: Treatment for autoimmune diseases such as systemic lupus erythematosus (SLE), idiopathic inflammatory myositis, and systemic sclerosis often involves long-term immune suppression. Resetting aberrant autoimmunity in these diseases through deep depletion of B cells is a potential strategy for achieving sustained drug-free remission. METHODS: We evaluated 15 patients with severe SLE (8 patients), idiopathic inflammatory myositis (3 patients), or systemic sclerosis (4 patients) who received a single infusion of CD19 chimeric antigen receptor (CAR) T cells after preconditioning with fludarabine and cyclophosphamide. Efficacy up to 2 years after CAR T-cell infusion was assessed by means of Definition of Remission in SLE (DORIS) remission criteria, American College of Rheumatology-European League against Rheumatism (ACR-EULAR) major clinical response, and the score on the European Scleroderma Trials and Research Group (EUSTAR) activity index (with higher scores indicating greater disease activity), among others. Safety variables, including cytokine release syndrome and infections, were recorded. RESULTS: The median follow-up was 15 months (range, 4 to 29). The mean (±SD) duration of B-cell aplasia was 112±47 days. All the patients with SLE had DORIS remission, all the patients with idiopathic inflammatory myositis had an ACR-EULAR major clinical response, and all the patients with systemic sclerosis had a decrease in the score on the EUSTAR activity index. Immunosuppressive therapy was completely stopped in all the patients. Grade 1 cytokine release syndrome occurred in 10 patients. One patient each had grade 2 cytokine release syndrome, grade 1 immune effector cell-associated neurotoxicity syndrome, and pneumonia that resulted in hospitalization. CONCLUSIONS: In this case series, CD19 CAR T-cell transfer appeared to be feasible, safe, and efficacious in three different autoimmune diseases, providing rationale for further controlled clinical trials. (Funded by Deutsche Forschungsgemeinschaft and others.).


Subject(s)
Antigens, CD19 , Immunotherapy, Adoptive , Lupus Erythematosus, Systemic , Myeloablative Agonists , Myositis , Scleroderma, Systemic , Humans , Antigens, CD19/administration & dosage , Cytokine Release Syndrome/etiology , Follow-Up Studies , Lupus Erythematosus, Systemic/therapy , Myositis/therapy , Scleroderma, Systemic/therapy , Myeloablative Agonists/administration & dosage , Cyclophosphamide/administration & dosage , Infections/etiology , Treatment Outcome
3.
Proc Natl Acad Sci U S A ; 120(29): e2301302120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428935

ABSTRACT

Carbapenemase and extended ß-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Animals , Klebsiella pneumoniae/genetics , Lipopolysaccharides , O Antigens , Klebsiella , Blotting, Western , Klebsiella Infections/prevention & control
4.
Proc Natl Acad Sci U S A ; 120(10): e2211937120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848578

ABSTRACT

The vast majority of human pancreatic ductal adenocarcinomas (PDACs) harbor TP53 mutations, underscoring p53's critical role in PDAC suppression. PDAC can arise when pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), giving rise to premalignant pancreatic intraepithelial neoplasias (PanINs), which finally progress to PDAC. The occurrence of TP53 mutations in late-stage PanINs has led to the idea that p53 acts to suppress malignant transformation of PanINs to PDAC. However, the cellular basis for p53 action during PDAC development has not been explored in detail. Here, we leverage a hyperactive p53 variant-p5353,54-which we previously showed is a more robust PDAC suppressor than wild-type p53, to elucidate how p53 acts at the cellular level to dampen PDAC development. Using both inflammation-induced and KRASG12D-driven PDAC models, we find that p5353,54 both limits ADM accumulation and suppresses PanIN cell proliferation and does so more effectively than wild-type p53. Moreover, p5353,54 suppresses KRAS signaling in PanINs and limits effects on the extracellular matrix (ECM) remodeling. While p5353,54 has highlighted these functions, we find that pancreata in wild-type p53 mice similarly show less ADM, as well as reduced PanIN cell proliferation, KRAS signaling, and ECM remodeling relative to Trp53-null mice. We find further that p53 enhances chromatin accessibility at sites controlled by acinar cell identity transcription factors. These findings reveal that p53 acts at multiple stages to suppress PDAC, both by limiting metaplastic transformation of acini and by dampening KRAS signaling in PanINs, thus providing key new understanding of p53 function in PDAC.


Subject(s)
Pancreatic Neoplasms , Precancerous Conditions , Humans , Animals , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics , Pancreatic Neoplasms/genetics , Pancreas , Metaplasia , Mice, Knockout
5.
Immunity ; 45(5): 1148-1161, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851915

ABSTRACT

The impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA+ CD4+ Tmem cells from blood and CD69+ Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation. Furthermore, distinct gradually changing signatures in the epigenome and the transcriptome supported a linear model of memory development in circulating T cells, while tissue-resident BM-Tmem branched off with a unique epigenetic profile. Integrative analyses identified candidate master regulators of Tmem cell differentiation, including the transcription factor FOXP1. This study highlights the importance of epigenomic changes for Tmem cell biology and demonstrates the value of epigenetic data for the identification of lineage regulators.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Epigenesis, Genetic/immunology , Epigenomics/methods , Immunologic Memory/immunology , Female , Flow Cytometry , Gene Expression Profiling/methods , Humans , Machine Learning , Polymerase Chain Reaction , Transcriptome
6.
Haematologica ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356450

ABSTRACT

The ongoing development of immunotherapies, including chimeric antigen receptor (CAR) T cells, has revolutionized cancer treatment. In paediatric relapsed/refractory B-lineage acute leukaemia antiCD19-CARs induced impressive initial response rates, with event-free survival plateauing at 30-50% in long-term follow-up data. During the interval between diagnosis of relapse or refractoriness and CAR T cell infusion, patients require a bridging therapy. To date, this therapy has consisted of highly variable approaches based on local experience. Here, in an European collaborative effort of paediatric and adult haematologists, we summarise current knowledge with the aim of establishing a guidance for bridging therapy. This includes treatment strategies for different patient subgroups, the advantages and disadvantages of low- and highintensity regimens, and the potential impact of bridging therapy on outcome after CAR T cell infusion. This guidance is a step towards a cross-institutional harmonization of bridging therapy, including personalized approaches. This will allow better comparability of clinical data and increase the level of evidence for the treatment of children and young adults with relapsed/refractory B-lineage ALL until CAR T cell infusion.

7.
Z Rheumatol ; 2024 May 23.
Article in German | MEDLINE | ID: mdl-38780637

ABSTRACT

Autoreactive B­cells play a key role in the pathogenesis of autoimmune diseases, such systemic lupus erythematosus (SLE). An efficient depletion of B­cells therefore plays a special role in autoimmune diseases, especially in cases with a severe course of the disease. Treatment with chimeric antigen receptor (CAR) T­cells, which was originally developed for the treatment of B­cell lymphomas and leukemias, provides the possibility to deplete B­cells even in deep tissues. The initial results from case series with this procedure for SLE, myositis and systemic sclerosis were very positive. This review article gives an overview of the course, mechanism of action, results so far and the research agenda of CAR T­cell therapy in autoimmune diseases.

8.
Exp Eye Res ; 237: 109718, 2023 12.
Article in English | MEDLINE | ID: mdl-37952725

ABSTRACT

The purpose of this study was to investigate the depth-dependent biomechanical properties of the human corneal stroma under uniaxial tensile loading. Human stroma samples were obtained after the removal of Descemet's membrane in the course of Descemet's membrane endothelial keratoplasty (DMEK) transplantation. Uniaxial tensile tests were performed at three different depths: anterior, central, and posterior on 2 × 6 × 0.15 mm strips taken from the central DMEK graft. The measured force-displacement data were used to calculate stress-strain curves and to derive the tangent modulus. The study showed that mechanical strength decreased significantly with depth. The anterior cornea appeared to be the stiffest, with a stiffness approximately 18% higher than that of the central cornea and approximately 38% higher than that of the posterior layer. Larger variations in mechanical response were observed in the posterior group, probably due to the higher degree of alignment of the collagen fibers in the posterior sections of the cornea. This study contributes to a better understanding of the biomechanical tensile properties of the cornea, which has important implications for the development of new treatment strategies for corneal diseases. Accurate quantification of tensile strength as a function of depth is critical information that is lacking in human corneal biomechanics to develop numerical models and new treatment methods.


Subject(s)
Cornea , Corneal Diseases , Humans , Cornea/physiology , Corneal Stroma/physiology , Corneal Diseases/surgery , Mechanical Phenomena , Tensile Strength , Descemet Membrane/surgery
9.
J Clin Psychopharmacol ; 43(2): 113-121, 2023.
Article in English | MEDLINE | ID: mdl-36700734

ABSTRACT

PURPOSE/BACKGROUND: Glycine transporter-1 inhibitors may ameliorate cognitive deficits in schizophrenia. This study evaluated potential drug-drug interactions with the glycine transporter-1 inhibitor BI 425809. METHODS/PROCEDURES: Interactions with cytochromes P450 (CYP) and P-glycoprotein (P-gp) were assessed in in vitro assays using human hepatocytes and Caco-2 cells, respectively. Pharmacokinetic characteristics of probe drugs were subsequently assessed in a Phase I, open-label, single-sequence crossover study in healthy male participants. Participants received a probe-drug cocktail containing midazolam (CYP3A4), warfarin (CYP2C9), and omeprazole (CYP2C19) and a separate dose of digoxin (P-gp), alone and on a background of steady-state BI 425809 25 mg once daily in 2 treatment periods. Adverse events were monitored. FINDINGS/RESULTS: In vitro assays revealed concentration-dependent induction of CYP3A4 and inhibition of P-gp by BI 425809. In the clinical study, 12 of 13 participants completed both periods. With BI 425809, area under the plasma concentration curve from administration to the last measurement (AUC 0-tz ) and maximum plasma concentration ( Cmax ) for midazolam were lower than when administered alone. Adjusted geometric mean ratios (90% confidence interval) were 70.6% (63.9%-78.1%) for AUC 0-tz and 77.6% (67.3%-89.4%) for Cmax . For warfarin and digoxin, AUC 0-tz and Cmax were similar with and without BI 425809. For omeprazole, BI 425809 slightly reduced AUC 0-tz but not Cmax versus omeprazole alone. No new safety signals were identified. IMPLICATIONS/CONCLUSIONS: These findings indicate induction of CYP3A4 by once-daily BI 425809 25 mg (the assumed highest therapeutic dose) and no meaningful effects on CYP2C9, CYP2C19, or P-gp in vivo.


Subject(s)
Glycine Plasma Membrane Transport Proteins , Midazolam , Humans , Male , Cytochrome P-450 CYP2C19 , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Cytochrome P-450 CYP3A , Warfarin , Cross-Over Studies , Cytochrome P-450 CYP2C9 , Caco-2 Cells , Caffeine/pharmacokinetics , Drug Interactions , Cytochrome P-450 Enzyme System/metabolism , Omeprazole/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B , Digoxin/pharmacokinetics , Area Under Curve
11.
Exp Eye Res ; 224: 109266, 2022 11.
Article in English | MEDLINE | ID: mdl-36179857

ABSTRACT

The porcine cornea is a standard animal model in ophthalmic research, making its biomechanical characterization and modeling important to develop novel treatments such as crosslinking and refractive surgeries. In this study, we present a numerical model of the porcine cornea based on experimental measurements that captures both the depth dependence and orientation dependence of the mechanical response. The mechanical parameters of the established anisotropic hyperelastic material models of Gasser, Holzapfel and Ogden (HGO) and Markert were determined using tensile tests. Corneas were cut with a femtosecond laser in the anterior (100 µm), central (350 µm), and posterior (600 µm) regions into nasal-temporal, superior-inferior, and diagonal strips of 150 µm thickness. These uniformly thick strips were tested at a low speed using a single-axis testing machine. The results showed that the corneal mechanical properties remained constant in the anterior half of the cornea regardless of orientation, but that the material softened in the posterior layer. These results are consistent with the circular orientation of collagen observed in porcine corneas using X-ray scattering. In addition, the parameters obtained for the HGO model were able to reproduce the published inflation tests, indicating that it is suitable for simulating the mechanical response of the entire cornea. Such a model constitutes the basis for in silico platforms to develop new ophthalmic treatments. In this way, researchers can match their experimental surrogate porcine model with a numerical counterpart and validate the prediction of their algorithms in a complete and accessible environment.


Subject(s)
Collagen , Cornea , Swine , Animals , Cornea/physiology , Stress, Mechanical , Biomechanical Phenomena
12.
J Pathol ; 254(2): 199-211, 2021 06.
Article in English | MEDLINE | ID: mdl-33675037

ABSTRACT

Osteosarcoma is an often-fatal mesenchyme-derived malignancy in children and young adults. Overexpression of EMT-transcription factors (EMT-TFs) has been associated with poor clinical outcome. Here, we demonstrated that the EMT-TF ZEB1 is able to block osteoblastic differentiation in normal bone development as well as in osteosarcoma cells. Consequently, overexpression of ZEB1 in osteosarcoma characterizes poorly differentiated, highly metastatic subgroups and its depletion induces differentiation of osteosarcoma cells. Overexpression of ZEB1 in osteosarcoma is frequently associated with silencing of the imprinted DLK-DIO3 locus, which encodes for microRNAs targeting ZEB1. Epigenetic reactivation of this locus in osteosarcoma cells reduces ZEB1 expression, induces differentiation, and sensitizes to standard treatment, thus indicating therapeutic options for ZEB1-driven osteosarcomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Bone Neoplasms/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Osteosarcoma/pathology , Zinc Finger E-box-Binding Homeobox 1/metabolism , Animals , Bone Development , Bone Neoplasms/drug therapy , Cell Differentiation , Cell Line , Cell Proliferation , Epigenomics , Gene Expression , Humans , Mesenchymal Stem Cells/pathology , Mice , Osteoblasts/pathology , Osteosarcoma/drug therapy , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics
13.
Phys Chem Chem Phys ; 24(35): 20913-20920, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36017635

ABSTRACT

The infrared photodissociation spectra of He-tagged (Al2O3)nFeO+ (n = 2-5), are reported in the Al-O and Fe-O stretching and bending spectral region (430-1200 cm-1) and assigned based on calculated harmonic IR spectra from density functional theory (DFT). The substitution of Fe for an Al center occurs preferentially at 3-fold oxygen coordination sites located at the cluster rim and with the Fe atom in the +III oxidation state. The accompanying elongation of metal oxygen bonds leaves the Al-O network structure nearly unperturbed (isomorphous substitution). Contrary to the Al2FeO4+ (n = 1), valence isomerism is not observed, which is attributed to a smaller M:O ratio (M = Al, Fe) and consequently decreasing electron affinities with increasing cluster size.

14.
Eur J Clin Pharmacol ; 78(5): 801-812, 2022 May.
Article in English | MEDLINE | ID: mdl-35089373

ABSTRACT

PURPOSE: The potent, selective phosphodiesterase-9A inhibitor BI 409306 may be beneficial for patients with attenuated psychosis syndrome and could prevent relapse in patients with schizophrenia. Transient BI 409306-dependent increases in heart rate (HR) demonstrated previously necessitated cardiac safety characterisation. We evaluated cardiac effects of BI 409306 in healthy volunteers during rest and exercise. METHODS: In this double-blind, three-way crossover study, volunteers received placebo, BI 409306 50 mg or 200 mg in randomised order (same treatment on Days 1 [resting] and 3 [exercise]). Cardiopulmonary exercise testing was performed twice post treatment on Day 3 of each period. BI 409306-mediated effects on placebo-corrected change from baseline in resting HR (ΔΔHR) were evaluated based on exposure-response analysis and a random coefficient model. Adverse events (AEs) were recorded. RESULTS: Overall, 19/20 volunteers completed. Resting ΔΔHR versus BI 409306 concentration yielded a slope of 0.0029 beats/min/nmol/L. At the geometric mean (gMean) maximum plasma concentration (Cmax) for BI 409306 50 and 200 mg, predicted mean (90% CI) ΔΔHRs were 0.80 (- 0.76, 2.36) and 5.46 (2.44, 8.49) beats/min, respectively. Maximum adjusted mean differences from placebo (90% CI) in resting HR for BI 409306 50 and 200 mg were 3.85 (0.73, 6.97) and 4.93 (1.69, 8.16) beats/min. Maximum differences from placebo in resting HR occurred at/near gMean Cmax and returned to baseline after approximately 4 h. The proportion of volunteers with AEs increased with BI 409306 dose. CONCLUSION: Observed hemodynamic effects following BI 409306 administration were of low amplitude, transient, and followed the pharmacokinetic profile of BI 409306.


Subject(s)
Pyrazoles , Pyrimidines , Cross-Over Studies , Double-Blind Method , Healthy Volunteers , Heart Rate , Humans , Pyrazoles/adverse effects
15.
Nucleic Acids Res ; 48(8): e46, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32103242

ABSTRACT

DNA methylation is an epigenetic mark with important regulatory roles in cellular identity and can be quantified at base resolution using bisulfite sequencing. Most studies are limited to the average DNA methylation levels of individual CpGs and thus neglect heterogeneity within the profiled cell populations. To assess this within-sample heterogeneity (WSH) several window-based scores that quantify variability in DNA methylation in sequencing reads have been proposed. We performed the first systematic comparison of four published WSH scores based on simulated and publicly available datasets. Moreover, we propose two new scores and provide guidelines for selecting appropriate scores to address cell-type heterogeneity, cellular contamination and allele-specific methylation. Most of the measures were sensitive in detecting DNA methylation heterogeneity in these scenarios, while we detected differences in susceptibility to technical bias. Using recently published DNA methylation profiles of Ewing sarcoma samples, we show that DNA methylation heterogeneity provides information complementary to the DNA methylation level. WSH scores are powerful tools for estimating variance in DNA methylation patterns and have the potential for detecting novel disease-associated genomic loci not captured by established statistics. We provide an R-package implementing the WSH scores for integration into analysis workflows.


Subject(s)
DNA Methylation , Sequence Analysis, DNA , Humans , Sarcoma, Ewing/genetics
16.
Angew Chem Int Ed Engl ; 61(29): e202202297, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35460320

ABSTRACT

The gas-phase reaction of NiAl2 O4 + with CH4 is studied by mass spectrometry in combination with vibrational action spectroscopy and density functional theory (DFT). Two product ions, NiAl2 O4 H+ and NiAl2 O3 H2 + , are identified in the mass spectra. The DFT calculations predict that the global minimum-energy isomer of NiAl2 O4 + contains Ni in the +II oxidation state and features a terminal Al-O.- oxygen radical site. They show that methane can react along two competing pathways leading to formation of either a methyl radical (CH3 ⋅) or formaldehyde (CH2 O). Both reactions are initiated by hydrogen atom transfer from methane to the terminal O.- site, followed by either CH3 ⋅ loss or CH3 ⋅ migration to an O2- site next to the Ni2+ center. The CH3 ⋅ attaches as CH3 + to O2- and its unpaired electron is transferred to the Ni-center reducing it to Ni+ . The proposed mechanism is experimentally confirmed by vibrational spectroscopy of the reactant and two different product ions.

17.
Bioconjug Chem ; 32(4): 713-720, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33793193

ABSTRACT

Many proteins are still routinely expressed prokaryotically in Escherichia coli, some because they are toxic to eukaryotes. Immunotoxins, which are fusion proteins of a targeting moiety and a truncated Pseudomonas exotoxin A, kill target cells by arresting protein synthesis. Thus, immunotoxins must be expressed in E. coli. Proteins expressed in E. coli are contaminated by endotoxin (also called lipopolysaccharides (LPS)). LPS binds to toll-like receptors, inducing up to life-threatening systemic inflammation in mammals. Therefore, accepted LPS limits for therapeutics as well as for substances used in immunological studies in animals are very low. Here, we report the use of Triton X-114 and polyamine-based wash strategies, which only in combination achieved LPS-contamination well below FDA limits. Resulting LPS-reduced immunotoxins were purer and up to 2.4-fold more active in vitro. Increased activity was associated with a 2.4-fold increase in affinity on cell surface expressed target antigen. The combination method maintained enzymatic function, protein stability, and in vivo efficacy and was effective for Fab as well as dsFv formats. With some modifications, the principle of this novel combination may be applied to any chromatography-based purification process.


Subject(s)
Amines/chemistry , Immunotoxins/isolation & purification , Lipopolysaccharides/toxicity , Octoxynol/chemistry , Animals , Humans , Immunotoxins/toxicity , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/toxicity
18.
Chemistry ; 27(7): 2223, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33617067

ABSTRACT

Invited for the cover of this issue is the group of Christian P. R. Hackenberger at the Leibniz-Forschungsinstitut für Molekulare Pharmakologie and the Humboldt-Universität zu Berlin. The image depicts a phospho-lysine peptide mimic which reflects a phosphorylated lysine but is not identical. Read the full text of the article at 10.1002/chem.202003947.

19.
Chemistry ; 27(7): 2326-2331, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32986895

ABSTRACT

The intrinsic lability of the phosphoramidate P-N bond in phosphorylated histidine (pHis), arginine (pHis) and lysine (pLys) residues is a significant challenge for the investigation of these post-translational modifications (PTMs), which gained attention rather recently. While stable mimics of pHis and pArg have contributed to study protein substrate interactions or to generate antibodies for enrichment as well as detection, no such analogue has been reported yet for pLys. This work reports the synthesis and evaluation of two pLys mimics, a phosphonate and a phosphate derivative, which can easily be incorporated into peptides using standard fluorenyl-methyloxycarbonyl- (Fmoc-)based solid-phase peptide synthesis (SPPS). In order to compare the biophysical properties of natural pLys with our synthetic mimics, the pKa values of pLys and analogues were determined in titration experiments applying nuclear magnetic resonance (NMR) spectroscopy in small model peptides. These results were used to compute electrostatic potential (ESP) surfaces obtained after molecular geometry optimization. These findings indicate the potential of the designed non-hydrolyzable, phosphonate-based mimic for pLys in various proteomic approaches.


Subject(s)
Biomimetic Materials/chemistry , Biomimetic Materials/chemical synthesis , Biomimetics , Lysine/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Phosphorylation , Proteomics , Solid-Phase Synthesis Techniques
20.
Br J Clin Pharmacol ; 87(4): 1824-1838, 2021 04.
Article in English | MEDLINE | ID: mdl-32986868

ABSTRACT

AIMS: To evaluate the safety, pharmacokinetics and pharmacodynamics of single- and multiple-rising doses (MRDs) of BI 705564 and establish proof of mechanism. METHODS: BI 705564 was studied in 2 placebo-controlled, Phase I clinical trials testing single-rising doses (1-160 mg) and MRDs (1-80 mg) of BI 705564 over 14 days in healthy male volunteers. Blood samples were analysed for BI 705564 plasma concentration, Bruton's tyrosine kinase (BTK) target occupancy (TO) and CD69 expression in B cells stimulated ex vivo. A substudy was conducted in allergic, otherwise healthy, MRD participants. Safety was assessed in both studies. RESULTS: All doses of BI 705564 were well tolerated. Geometric mean BI 705564 plasma terminal half-life ranged from 10.1 to 16.9 hours across tested doses, with no relevant accumulation after multiple dosing. Doses ≥20 mg resulted in ≥85% average TO that was maintained for ≥48 hours after single-dose administration. Functional effects of BTK signalling were demonstrated by dose-dependent inhibition of CD69 expression. In allergic participants, BI 705564 treatment showed a trend in wheal size reduction in a skin prick test and complete inhibition of basophil activation. Mild bleeding-related adverse events were observed with BI 705564; bleeding time increased in 1/12 participants (8.3%) who received placebo vs 26/48 (54.2%) treated with BI 705564. CONCLUSION: BI 705564 showed efficient target engagement through durable TO and inhibition of ex vivo B-cell activation, and proof of mechanism through effects on allergic skin responses. Mild bleeding-related adverse events were probably related to inhibition of platelet aggregation by BTK inhibition.


Subject(s)
B-Lymphocytes , Platelet Aggregation , Agammaglobulinaemia Tyrosine Kinase , Healthy Volunteers , Humans , Male , Protein Kinase Inhibitors/adverse effects , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL