Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 881
Filter
Add more filters

Publication year range
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38385874

ABSTRACT

The three-dimensional (3D) structure of bacterial chromosomes is crucial for understanding chromosome function. With the growing availability of high-throughput chromosome conformation capture (3C/Hi-C) data, the 3D structure reconstruction algorithms have become powerful tools to study bacterial chromosome structure and function. It is highly desired to have a recommendation on the chromosome structure reconstruction tools to facilitate the prokaryotic 3D genomics. In this work, we review existing chromosome 3D structure reconstruction algorithms and classify them based on their underlying computational models into two categories: constraint-based modeling and thermodynamics-based modeling. We briefly compare these algorithms utilizing 3C/Hi-C datasets and fluorescence microscopy data obtained from Escherichia coli and Caulobacter crescentus, as well as simulated datasets. We discuss current challenges in the 3D reconstruction algorithms for bacterial chromosomes, primarily focusing on software usability. Finally, we briefly prospect future research directions for bacterial chromosome structure reconstruction algorithms.


Subject(s)
Bacteria , Chromosome Structures , Prokaryotic Cells , Chromosomes, Bacterial/genetics , Algorithms , Escherichia coli/genetics
2.
Nat Chem Biol ; 20(6): 770-778, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409364

ABSTRACT

Metal-binding proteins (MBPs) have various and important biological roles in all living species and many human diseases are intricately linked to dysfunctional MBPs. Here, we report a chemoproteomic method named 'metal extraction-triggered agitation logged by thermal proteome profiling' (METAL-TPP) to globally profile MBPs in proteomes. The method involves the extraction of metals from MBPs using chelators and monitoring the resulting protein stability changes through thermal proteome profiling. Applying METAL-TPP to the human proteome with a broad-spectrum chelator, EDTA, revealed a group of proteins with reduced thermal stability that contained both previously known MBPs and currently unannotated MBP candidates. Biochemical characterization of one potential target, glutamine-fructose-6-phosphate transaminase 2 (GFPT2), showed that zinc bound the protein, inhibited its enzymatic activity and modulated the hexosamine biosynthesis pathway. METAL-TPP profiling with another chelator, TPEN, uncovered additional MBPs in proteomes. Collectively, this study developed a robust tool for proteomic discovery of MBPs and provides a rich resource for functional studies of metals in cell biology.


Subject(s)
Proteome , Proteomics , Humans , Proteome/metabolism , Proteomics/methods , Chelating Agents/chemistry , Chelating Agents/pharmacology , Metals/metabolism , Metals/chemistry , Zinc/metabolism , Zinc/chemistry , Temperature , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/antagonists & inhibitors , Protein Stability
3.
Nature ; 583(7818): 771-774, 2020 07.
Article in English | MEDLINE | ID: mdl-32728236

ABSTRACT

Seeing-the angular size of stellar images blurred by atmospheric turbulence-is a critical parameter used to assess the quality of astronomical sites at optical/infrared wavelengths. Median values at the best mid-latitude sites are generally in the range of 0.6-0.8 arcseconds1-3. Sites on the Antarctic plateau are characterized by comparatively weak turbulence in the free atmosphere above a strong but thin boundary layer4-6. The median seeing at Dome C is estimated to be 0.23-0.36 arcseconds7-10 above a boundary layer that has a typical height of 30 metres10-12. At Domes A and F, the only previous seeing measurements have been made during daytime13,14. Here we report measurements of night-time seeing at Dome A, using a differential image motion monitor15. Located at a height of just 8 metres, it recorded seeing as low as 0.13 arcseconds, and provided seeing statistics that are comparable to those at a height of 20 metres at Dome C. This indicates that the boundary layer was below 8 metres for 31 per cent of the time, with median seeing of 0.31 arcseconds, consistent with free-atmosphere seeing. The seeing and boundary-layer thickness are found to be strongly correlated with the near-surface temperature gradient. The correlation confirms a median thickness of approximately 14 metres for the boundary layer at Dome A, as found from a sonic radar16. The thinner boundary layer makes it less challenging to locate a telescope above it, thereby giving greater access to the free atmosphere.

4.
Nat Chem Biol ; 19(5): 548-555, 2023 05.
Article in English | MEDLINE | ID: mdl-36593274

ABSTRACT

Metal ions have various important biological roles in proteins, including structural maintenance, molecular recognition and catalysis. Previous methods of predicting metal-binding sites in proteomes were based on either sequence or structural motifs. Here we developed a co-evolution-based pipeline named 'MetalNet' to systematically predict metal-binding sites in proteomes. We applied MetalNet to proteomes of four representative prokaryotic species and predicted 4,849 potential metalloproteins, which substantially expands the currently annotated metalloproteomes. We biochemically and structurally validated previously unannotated metal-binding sites in several proteins, including apo-citrate lyase phosphoribosyl-dephospho-CoA transferase citX, an Escherichia coli enzyme lacking structural or sequence homology to any known metalloprotein (Protein Data Bank (PDB) codes: 7DCM and 7DCN ). MetalNet also successfully recapitulated all known zinc-binding sites from the human spliceosome complex. The pipeline of MetalNet provides a unique and enabling tool for interrogating the hidden metalloproteome and studying metal biology.


Subject(s)
Metalloproteins , Proteome , Humans , Amino Acid Sequence , Proteome/chemistry , Metals/metabolism , Metalloproteins/metabolism , Binding Sites , Escherichia coli/metabolism , Machine Learning
5.
BMC Genomics ; 25(1): 129, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38297226

ABSTRACT

BACKGROUND: Lipid metabolism plays a pivotal role in asthma pathogenesis. However, a comprehensive analysis of the importance of lipid metabolism-related genes (LMRGs) in regulating the immune microenvironment in asthma remains lacking. The transcriptome matrix was downloaded from the Gene Expression Omnibus (GEO) dataset. Differentially expressed analysis and weighted gene coexpression network analysis (WGCNA) were conducted on the GSE74986 dataset to select hub LMRGs, and gene set enrichment analysis (GSEA) was conducted to explore their biological functions. The CIBERSORT algorithm was used to determine immune infiltration in the asthma and control groups, and the correlation of diagnostic biomarkers and immune cells was performed via Spearman correlation analysis. Subsequently, a competitive endogenous RNA (ceRNA) network was constructed to investigate the hidden molecular mechanism of asthma. The expression levels of the hub genes were further validated in the GSE143192 dataset, and RT‒qPCR and immunofluorescence were performed to verify the reliability of the results in the OVA asthma model. Lastly, the ceRNA network was confirmed by qRT-PCR and RNAi experiments in the characteristic cytokine (IL-13)-induced asthma cellular model. RESULTS: ASAH1, ACER3 and SGPP1 were identified as hub LMRGs and were mainly involved in protein secretion, mTORC1 signaling, and fatty acid metabolism. We found more infiltration of CD8+ T cells, activated NK cells, and monocytes and less M0 macrophage infiltration in the asthma group than in the healthy control group. In addition, ASAH1, ACER3, and SGPP1 were negatively correlated with CD8+ T cells and activated NK cells, but positively correlated with M0 macrophages. Within the ceRNA network, SNHG9-hsa-miR-615-3p-ACER3, hsa-miR-212-5p and hsa-miR-5682 may play crucial roles in asthma pathogenesis. The low expression of ASAH1 and SGPP1 in asthma was also validated in the GSE74075 dataset. After SNHG9 knockdown, miR-615-3p expression was significantly upregulated, while that of ACER3 was significantly downregulated. CONCLUSION: ASAH1, ACER3 and SGPP1 might be diagnostic biomarkers for asthma, and are associated with increased immune system activation. In addition, SNHG9-hsa-miR-615-3p-ACER3 may be viewed as effective therapeutic targets for asthma. Our findings might provide a novel perspective for future research on asthma.


Subject(s)
Asthma , MicroRNAs , Humans , CD8-Positive T-Lymphocytes , Lipid Metabolism , Reproducibility of Results , Asthma/genetics , Hydrolases , Biomarkers
6.
Drug Metab Rev ; : 1-46, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895934

ABSTRACT

With contributions from colleagues across academia and industry, we have put together the annual reviews of research advances on drug biotransformation and bioactivation since 2016 led by Cyrus Khojasteh. While traditional small molecules and biologics are still predominant in drug discovery, we start to notice a paradigm shift toward new drug modalities (NDMs) including but not limited to peptide and oligonucleotide therapeutics, protein degraders (heterobifunctional degraders and molecule glues), conjugated drugs and covalent inhibitors. The readers can learn more on each new drug modality from several recent comprehensive reviews (Blanco et al., 2022; Hillebrand et al., 2024; Phuna et al., 2024). Based on this trend, we put together this stand-alone review branched from our previous efforts (Baillie et al., 2016; Khojasteh et al., 2023) with a focus on the metabolism of NDMs. We collected 11 articles which exemplify recent discoveries and perspectives in this field.

7.
Chembiochem ; 25(12): e202400105, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38639074

ABSTRACT

Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.


Subject(s)
Aluminum , Antineoplastic Agents , Cellular Senescence , Ethylenediamines , Platinum , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ethylenediamines/chemistry , Ethylenediamines/pharmacology , Cellular Senescence/drug effects , Platinum/chemistry , Platinum/pharmacology , Aluminum/chemistry , Aluminum/pharmacology , Animals , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Mice , Cell Proliferation/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Neoplasms/drug therapy , Neoplasms/pathology , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry
8.
Bioinformatics ; 39(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37847746

ABSTRACT

MOTIVATION: Reconstruction of 3D structure models is of great importance for the study of chromosome function. Software tools for this task are highly needed. RESULTS: We present a novel reconstruction algorithm, called EVRC, which utilizes co-clustering coefficients and error-vector resultant for chromosome 3D structure reconstruction. As an update of our previous EVR algorithm, EVRC now can deal with both single and multiple chromosomes in structure modeling. To evaluate the effectiveness and accuracy of the EVRC algorithm, we applied it to simulation datasets and real Hi-C datasets. The results show that the reconstructed structures have high similarity to the original/real structures, indicating the effectiveness and robustness of the EVRC algorithm. Furthermore, we applied the algorithm to the 3D conformation reconstruction of the wild-type and mutant Arabidopsis thaliana chromosomes and demonstrated the differences in structural characteristics between different chromosomes. We also accurately showed the conformational change in the centromere region of the mutant compared with the wild-type of Arabidopsis chromosome 1. Our EVRC algorithm is a valuable software tool for the field of chromatin structure reconstruction, and holds great promise for advancing our understanding on the chromosome functions. AVAILABILITY AND IMPLEMENTATION: The software is available at https://github.com/mbglab/EVRC.


Subject(s)
Chromosome Structures , Chromosomes , Chromosomes/genetics , Algorithms , Software , Centromere , Cluster Analysis
9.
Drug Metab Dispos ; 52(3): 236-241, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38123963

ABSTRACT

Rifampicin (RIF) is a mixed-mode perpetrator that produces pleiotropic effects on liver cytochrome P450 enzymes and drug transporters. To assess the complex drug-drug interaction liabilities of RIF in vivo, a known probe substrate, midazolam (MDZ), along with multiple endogenous biomarkers were simultaneously monitored in beagle dogs before and after a 7-day treatment period by RIF at 20 mg/kg per day. Confirmed by the reduced MDZ plasma exposure and elevated 4ß-hydroxycholesterol (4ß-HC, biomarker of CYP3A activities) level, CYP3A was significantly induced after repeated RIF doses, and such induction persisted for 3 days after cessation of the RIF administration. On the other hand, increased plasma levels of coproporphyrin (CP)-I and III [biomarkers of organic anion transporting polypeptides 1b (Oatp1b) activities] were observed after the first dose of RIF. Plasma CPs started to decline as RIF exposure decreased, and they returned to baseline 3 days after cessation of the RIF administration. The data suggested the acute (inhibitory) and chronic (inductive) effects of RIF on Oatp1b and CYP3A enzymes, respectively, and a 3-day washout period is deemed adequate to remove superimposed Oatp1b inhibition from CYP3A induction. In addition, apparent self-induction of RIF was observed as its terminal half-life was significantly altered after multiple doses. Overall, our investigation illustrated the need for appropriate timing of modulator dosing to differentiate between transporter inhibition and enzyme induction. As further indicated by the CP data, induction of Oatp1b activities was not likely after repeated RIF administration. SIGNIFICANCE STATEMENT: This investigation demonstrated the utility of endogenous biomarkers towards complex drug-drug interactions by rifampicin (RIF) and successfully determined the optimal timing to differentiate between transporter inhibition and enzyme induction. Based on experimental evidence, Oatp1b induction following repeated RIF administration was unlikely, and apparent self-induction of RIF elimination was observed.


Subject(s)
Cytochrome P-450 CYP3A , Rifampin , Dogs , Animals , Rifampin/pharmacology , Pharmaceutical Preparations , Midazolam , Drug Interactions , Biomarkers
10.
Respir Res ; 25(1): 105, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419020

ABSTRACT

BACKGROUND: Increasing evidence is appearing that ozone has adverse effects on health. However, the association between long-term ozone exposure and lung function is still inconclusive. OBJECTIVES: To investigate the associations between long-term exposure to ozone and lung function in Chinese young adults. METHODS: We conducted a prospective cohort study among 1594 college students with a mean age of 19.2 years at baseline in Shandong, China from September 2020 to September 2021. Lung function indicators were measured in September 2020 and September 2021, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), forced expiratory flow at the 25th, 50th, and 75th percentile of the FVC (FEF25, FEF50, and FEF75) and mean flow rate between 25% and 75% of the FVC (FEF25-75) were measured. Daily 10 km×10 km ozone concentrations come from a well-validated data-fusion approach. The time-weighted average concentrations in 12 months before the lung function test were defined as the long-term ozone exposure. The associations between long-term ozone exposure and lung function indicators in Chinese young adults were investigated using a linear mixed effects model, followed by stratified analyses regarding sex, BMI and history of respiratory diseases. RESULTS: Each interquartile range (IQR) (8.9 µg/m3) increase in long-term ozone exposure were associated with a -204.3 (95% confidence interval (CI): -361.6, -47.0) ml/s, -146.3 (95% CI: -264.1, -28.4) ml/s, and - 132.8 (95% CI: -239.2, -26.4) ml/s change in FEF25, FEF50, and FEF25-75, respectively. Stronger adverse associations were found in female participants or those with BMI ≥ 24 kg/m2 and history of respiratory diseases. CONCLUSION: Long-term exposure to ambient ozone is associated with impaired small airway indicators in Chinese young adults. Females, participants with BMI ≥ 24 kg/m2 and a history of respiratory disease have stronger associations.


Subject(s)
Air Pollutants , Ozone , Respiratory Tract Diseases , Humans , Female , Young Adult , Adult , Lung , Longitudinal Studies , Prospective Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Ozone/toxicity , Cohort Studies , Forced Expiratory Volume , Respiratory Tract Diseases/chemically induced , Respiratory Tract Diseases/diagnosis , Respiratory Tract Diseases/epidemiology , Air Pollutants/analysis
11.
Nature ; 557(7705): 424-428, 2018 05.
Article in English | MEDLINE | ID: mdl-29743678

ABSTRACT

Triticum urartu (diploid, AA) is the progenitor of the A subgenome of tetraploid (Triticum turgidum, AABB) and hexaploid (Triticum aestivum, AABBDD) wheat1,2. Genomic studies of T. urartu have been useful for investigating the structure, function and evolution of polyploid wheat genomes. Here we report the generation of a high-quality genome sequence of T. urartu by combining bacterial artificial chromosome (BAC)-by-BAC sequencing, single molecule real-time whole-genome shotgun sequencing 3 , linked reads and optical mapping4,5. We assembled seven chromosome-scale pseudomolecules and identified protein-coding genes, and we suggest a model for the evolution of T. urartu chromosomes. Comparative analyses with genomes of other grasses showed gene loss and amplification in the numbers of transposable elements in the T. urartu genome. Population genomics analysis of 147 T. urartu accessions from across the Fertile Crescent showed clustering of three groups, with differences in altitude and biostress, such as powdery mildew disease. The T. urartu genome assembly provides a valuable resource for studying genetic variation in wheat and related grasses, and promises to facilitate the discovery of genes that could be useful for wheat improvement.


Subject(s)
Evolution, Molecular , Genome, Plant/genetics , Phylogeny , Triticum/classification , Triticum/genetics , Altitude , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Plant/genetics , DNA Transposable Elements/genetics , Genetic Variation , Geographic Mapping , Molecular Sequence Annotation , Plant Diseases/microbiology , Sequence Analysis, DNA , Synteny/genetics
12.
Support Care Cancer ; 32(3): 194, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411723

ABSTRACT

To assess the level of supportive care needs of caregivers of colorectal cancer patients and explore the related key influencing factors. Totaling 283 caregivers of patients with colorectal cancer were investigated in this study. Firstly, caregivers were invited to complete a set of questionnaires, including the general information questionnaire, the Supportive Care Needs Survey-Partners and the Caregivers of cancer patients, the Caregiver Preparedness Scale, the Benefit Finding Scale, and the Comprehensive Score for Financial Toxicity. Univariate and multivariate linear regression were performed to investigate the associated factors of supportive care needs. The caregivers of patients with colorectal cancer have a moderate level of needs, scored at 2.71 ± 0.42. Caregiver preparedness, benefit finding, and financial toxicity were significantly negatively associated with the supportive care needs of caregivers (r = - 0.555, P < 0.001; r = - 0.534, P < 0.001; and r = - 0.615, P < 0.001, respectively). Our multivariate regression analysis identified some factors that directly affected the supportive care needs of caregivers, including the duration of illness, tumor stage, the age and educational level of caregivers, caregiver preparedness, benefit finding, and financial toxicity (R2 = 0.574, F = 23.337, P < 0.001). Supportive care needs are common among caregivers of colorectal cancer patients. Higher caregiver preparedness, benefit finding, and financial toxicity tend to ease these needs. Healthcare workers should have an in-depth understanding of the needs of caregivers of colorectal cancer patients and actively provide targeted financial/informational/technical/emotional support to promote nursing skills and reduce caregivers' burdens.


Subject(s)
Caregivers , Colorectal Neoplasms , Humans , Cross-Sectional Studies , Health Personnel , Caregiver Burden , Colorectal Neoplasms/therapy
13.
Arch Phys Med Rehabil ; 105(3): 558-570, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37150427

ABSTRACT

OBJECTIVE: A network meta-analysis of randomized controlled trials (RCTs) was conducted to compare and rank the effectiveness of various breathing exercises for patients with chronic obstructive pulmonary disease (COPD). DATA SOURCES: We searched PubMed, Web of Science, Embase, and the Cochrane Library databases to determine the articles. STUDY SELECTION: Publications investigating the effect of breathing exercises on exercise capacity (six-minute walk test [6MWT]), pulmonary function (the ratio of the first second forced expiratory volume of forced vital capacity [FEV1/FVC]), quality of life (St George's Respiratory Questionnaire [SGRQ]), inspiratory muscle pressure (maximum inspiratory pressure [PImax]), and dyspnea (Borg scale) were searched. DATA EXTRACTION: Data extracted by 2 researchers were entered into predesigned tables for data extraction. The quality of the literature was assessed using the Cochrane Collaboration's tool. DATA SYNTHESIS: A total of 43 RCTs involving 1977 participants were analyzed. To boost exercise capacity, the top 2 exercises were inspiratory muscle training (75%), Chinese traditional fitness exercises (13%); To improve pulmonary function, the top 2 exercises were Chinese traditional fitness exercises (32%), diaphragm breathing (30%); To raise patients' quality of life, the top 2 exercises were yoga (52%), diaphragm breathing (28%); To increase inspiratory muscle pressure, the top 2 exercises were pursed-lip breathing (47%), Chinese traditional fitness exercises (25%); To improve dyspnea, the top 2 exercises were yoga (44%), inspiratory muscle training (22%). CONCLUSIONS: Various breathing exercises for COPD patients confer benefits that manifest in diverse ways. Pulmonary rehabilitation specialists could administer personalized breathing exercises tailored to each patient's condition to attain optimal therapeutic outcomes.


Subject(s)
Breathing Exercises , Pulmonary Disease, Chronic Obstructive , Humans , Network Meta-Analysis , Exercise Therapy , Dyspnea
14.
Appl Opt ; 63(16): 4386-4395, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856618

ABSTRACT

Reflective mirrors are the key imaging components of space-borne telescopes, which require a high lightweight ratio integrated with excellent optical properties. In this context, a novel, to our knowledge, 2.5D centroidal Voronoi tessellation (CVT) generation methodology is proposed for designing and optimizing a lightweight mirror structure. Firstly, the initial designs are obtained combining global sensitivity factor mapping and local distribution optimization. Then, the optimal model is selected through multi-objective optimization and decision making. Subsequently, the FEA (finite element analysis) results indicate that, under the same mass, the proposed design exhibits better optomechanical performance. Finally, in practical applications, the approach presented in this paper outperforms the traditional design for each technological requirement, including a 62% reduction in RMS and a higher lightweight ratio. This method offers a kind of novel design and optimization process for space-based optomechanical lightweight structures.

15.
Nucleic Acids Res ; 50(16): e94, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35657094

ABSTRACT

While amber suppression is the most common approach to introduce noncanonical amino acids into proteins in live cells, quadruplet codon decoding has potential to enable a greatly expanded genetic code with up to 256 new codons for protein biosynthesis. Since triplet codons are the predominant form of genetic code in nature, quadruplet codon decoding often displays limited efficiency. In this work, we exploited a new approach to significantly improve quadruplet UAGN and AGGN (N = A, U, G, C) codon decoding efficiency by using recoding signals imbedded in mRNA. With representative recoding signals, the expression level of mutant proteins containing UAGN and AGGN codons reached 48% and 98% of that of the wild-type protein, respectively. Furthermore, this strategy mitigates a common concern of reading-through endogenous stop codons with amber suppression-based system. Since synthetic recoding signals are rarely found near the endogenous UAGN and AGGN sequences, a low level of undesirable suppression is expected. Our strategy will greatly enhance the utility of noncanonical amino acid mutagenesis in live-cell studies.


Subject(s)
Genetic Code , Genetic Techniques , Mutagenesis , Amino Acids/genetics , Amino Acids/metabolism , Protein Biosynthesis , Proteins/genetics
16.
Echocardiography ; 41(1): e15729, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113302

ABSTRACT

We described a case of a double aortic arch (DAA) with a subaortic left brachiocephalic vein (LBCV) and right-side ductus arteriosus using high-definition (HD) flow render mode and spatiotemporal image correlation (STIC). We experienced uncertainty regarding this interesting case despite the diagnosis of right-sided ductus arteriosus. The ductus arteriosus originates from the right pulmonary artery (PA) and converges into the descending aorta (DAO), whereas the vessel originated from the PA and converged into the ascending aorta (AAO). Therefore, we assumed that the vessel connecting the PA to AAO may be a type-C persistent fifth aortic arch (PFAA).


Subject(s)
Ductus Arteriosus, Patent , Ductus Arteriosus , Vascular Ring , Pregnancy , Female , Humans , Ductus Arteriosus/diagnostic imaging , Aorta, Thoracic/diagnostic imaging , Ductus Arteriosus, Patent/diagnostic imaging , Aorta
17.
Fetal Diagn Ther ; 51(2): 154-158, 2024.
Article in English | MEDLINE | ID: mdl-38008077

ABSTRACT

INTRODUCTION: Megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome is a rare autosomal dominant disorder characterized by megalencephaly (i.e., overgrowth of the brain), polymicrogyria, focal hypoplasia of the cerebral cortex, and polydactyly. Persistent hyperplastic primary vitreous (PHPV) involves a spectrum of congenital ocular abnormalities that are characterized by the presence of a vascular membrane behind the lens. CASE PRESENTATION: Here, we present a case of foetal MPPH with PHPV that was diagnosed using prenatal ultrasound. Ultrasound revealed the presence of megalencephaly, multiple cerebellar gyri, and hydrocephalus. Whole-exome sequencing confirmed the mutation of the AKT3 gene, which led to the consideration of MPPH syndrome. Moreover, an echogenic band with an irregular surface was observed between the lens and the posterior wall of the left eye; therefore, MPPH with PHPV was suspected. CONCLUSION: MPPH syndrome with PHPV can be diagnosed prenatally.


Subject(s)
Hydrocephalus , Malformations of Cortical Development , Megalencephaly , Persistent Hyperplastic Primary Vitreous , Polydactyly , Polymicrogyria , Pregnancy , Female , Humans , Polymicrogyria/diagnostic imaging , Polymicrogyria/genetics , Persistent Hyperplastic Primary Vitreous/diagnostic imaging , Magnetic Resonance Imaging , Malformations of Cortical Development/diagnosis , Malformations of Cortical Development/genetics , Hydrocephalus/diagnostic imaging , Megalencephaly/genetics , Polydactyly/diagnostic imaging , Polydactyly/genetics , Syndrome , Ultrasonography, Prenatal
18.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338730

ABSTRACT

Light intensity primarily drives plant growth and morphogenesis, whereas the ecological impact of light intensity on the phyllosphere (leaf surface and endosphere) microbiome is poorly understood. In this study, garden lettuce (Lactuca sativa L.) plants were grown under low, medium, and high light intensities. High light intensity remarkably induced the leaf contents of soluble proteins and chlorophylls, whereas it reduced the contents of leaf nitrate. In comparison, medium light intensity exhibited the highest contents of soluble sugar, cellulose, and free amino acids. Meanwhile, light intensity resulted in significant changes in the composition of functional genes but not in the taxonomic compositions of the prokaryotic community (bacteria and archaea) in the phyllosphere. Notably, garden lettuce plants under high light intensity treatment harbored more sulfur-cycling mdh and carbon-cycling glyA genes than under low light intensity, both of which were among the 20 most abundant prokaryotic genes in the leaf phyllosphere. Furthermore, the correlations between prokaryotic functional genes and lettuce leaf metabolite groups were examined to disclose their interactions under varying light intensities. The relative abundance of the mdh gene was positively correlated with leaf total chlorophyll content but negatively correlated with leaf nitrate content. In comparison, the relative abundance of the glyA gene was positively correlated with leaf total chlorophyll and carotenoids. Overall, this study revealed that the functional composition of the phyllosphere prokaryotic community and leaf metabolite groups were tightly linked in response to changing light intensities. These findings provided novel insights into the interactions between plants and prokaryotic microbes in indoor farming systems, which will help optimize environmental management in indoor farms and harness beneficial plant-microbe relationships for crop production.


Subject(s)
Lactuca , Nitrates , Lactuca/genetics , Nitrates/metabolism , Gardens , Chlorophyll/metabolism , Plant Leaves/metabolism
19.
BMC Genomics ; 24(1): 584, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789264

ABSTRACT

BACKGROUND: B-box (BBX) proteins play important roles in regulating plant growth, development, and abiotic stress responses. BBX family genes have been identified and functionally characterized in many plant species, but little is known about the BBX family in blueberry (Vaccinium corymbosum). RESULT: In this study, we identified 23 VcBBX genes from the Genome Database for Vaccinium (GDV). These VcBBXs can be divided into five clades based on gene structures and conserved domains in their encoded proteins. The prediction of cis-acting elements in the upstream sequences of VcBBX genes and protein-protein interactions indicated that VcBBX proteins are likely involved in phytohormone signaling pathways and abiotic stress responses. Analysis of transcriptome deep sequencing (RNA-seq) data showed that VcBBX genes exhibited organ-specific expression pattern and 11 VcBBX genes respond to ultraviolet B (UV-B) radiation. The co-expression analysis revealed that the encoded 11 VcBBX proteins act as bridges integrating UV-B and phytohormone signaling pathways in blueberry under UV-B radiation. Reverse-transcription quantitative PCR (RT-qPCR) analysis showed that most VcBBX genes respond to drought, salt, and cold stress. Among VcBBX proteins, VcBBX24 is highly expressed in all the organs, not only responds to abiotic stress, but it also interacts with proteins in UV-B and phytohormone signaling pathways, as revealed by computational analysis and co-expression analysis, and might be an important regulator integrating abiotic stress and phytohormone signaling networks. CONCLUSIONS: Twenty-three VcBBX genes were identified in blueberry, in which, 11 VcBBX genes respond to UV-B radiation, and act as bridges integrating UV-B and phytohormone signaling pathways according to RNA-seq data. The expression patterns under abiotic stress suggested that the functional roles of most VcBBX genes respose to drought, salt, and cold stress. Our study provides a useful reference for functional analysis of VcBBX genes and for improving abiotic stress tolerance in blueberry.


Subject(s)
Blueberry Plants , Blueberry Plants/genetics , Plant Growth Regulators/metabolism , Stress, Physiological/genetics , Genome, Plant , Transcriptome , Cold-Shock Response , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant
20.
Drug Metab Rev ; 55(4): 267-300, 2023 11.
Article in English | MEDLINE | ID: mdl-37608698

ABSTRACT

With the 50th year mark since the launch of Drug Metabolism and Disposition journal, the field of drug metabolism and bioactivation has advanced exponentially in the past decades (Guengerich 2023).This has, in a major part, been due to the continued advances across the whole spectrum of applied technologies in hardware, software, machine learning (ML), and artificial intelligence (AI). LC-MS platforms continue to evolve to support key applications in the field, and automation is also improving the accuracy, precision, and throughput of these supporting assays. In addition, sample generation and processing is being aided by increased diversity and quality of reagents and bio-matrices so that what is being analyzed is more relevant and translatable. The application of in silico platforms (applied software, ML, and AI) is also making great strides, and in tandem with the more traditional approaches mentioned previously, is significantly advancing our understanding of bioactivation pathways and how these play a role in toxicity. All of this continues to allow the area of bioactivation to evolve in parallel with associated fields to help bring novel or improved medicines to patients with urgent or unmet needs.Shuai Wang and Cyrus Khojasteh, on behalf of the authors.


Subject(s)
Artificial Intelligence , Machine Learning , Humans , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL