Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Virol ; 96(12): e0044522, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35638831

ABSTRACT

HIV persistence requires lifelong antiretroviral therapy (ART), calling for a cure. The histone deacetylase inhibitor, romidepsin, is used in the "shock and kill" approach with the goal of reactivating virus and subsequently clearing infected cells through cell-mediated immune responses. We tested serial and double infusions of romidepsin in a rhesus macaque (RM) model of SIV functional cure, which controls virus without ART. Off ART, romidepsin reactivated SIV in all RMs. Subsequent infusions resulted in diminished reactivation, and two RMs did not reactivate the virus after the second or third infusions. Therefore, those two RMs received CD8-depleting antibody to assess the replication competence of the residual reservoir. The remaining RMs received double infusions, i.e., two doses separated by 48-h. Double infusions were well tolerated, induced immune activation, and effectively reactivated SIV. Although reactivation was gradually diminished, cell-associated viral DNA was minimally changed, and viral outgrowth occurred in 4/5 RMs. In the RM which did not reactivate after CD8 depletion, viral outgrowth was not detected in peripheral blood mononuclear cells (PBMC)-derived CD4+ cells. The frequency of SIV-specific CD8+ T cells increased after romidepsin administration, and the increased SIV-specific immune responses were associated, although not statistically, with the diminished reactivation. Thus, our data showing sequential decreases in viral reactivation with repeated romidepsin administrations with all RMs and absence of viral reactivation after CD8+ T-cell depletion in one animal suggest that, in the context of healthy immune responses, romidepsin affected the inducible viral reservoir and gradually increased immune-mediated viral control. Given the disparities between the results of romidepsin administration to ART-suppressed SIVmac239-infected RMs and HIV-infected normal progressors compared to our immune-healthy model, our data suggest that improving immune function for greater SIV-specific responses should be the starting point of HIV cure strategies. IMPORTANCE HIV cure is sought after due to the prevalence of comorbidities that occur in persons with HIV. One of the most investigated HIV cure strategies is the "shock and kill" approach. Our study investigated the use of romidepsin, a histone deacetylase (HDAC) inhibitor, in our rhesus macaque model of functional cure, which allows for better resolution of viral reactivation due to the lack of antiretroviral therapy. We found that repeated rounds of romidepsin resulted in gradually diminished viral reactivation. One animal inevitably lacked replication-competent virus in the blood. With the accompanying enhancement of the SIV-specific immune response, our data suggest that there is a reduction of the viral reservoir in one animal by the cell-mediated immune response. With the differences observed between our model and persons living with HIV (PWH) treated with romidepsin, specifically in the context of a healthy immune system in our model, our data thereby indicate the importance of restoring the immune system for cure strategies.


Subject(s)
Anti-Retroviral Agents , Depsipeptides , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents/pharmacology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes , Depsipeptides/pharmacology , HIV Infections , Leukocytes, Mononuclear/virology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Viral Load , Virus Activation/drug effects , Virus Replication
2.
PLoS Pathog ; 16(3): e1008333, 2020 03.
Article in English | MEDLINE | ID: mdl-32119719

ABSTRACT

Unlike HIV infection, SIV infection is generally nonpathogenic in natural hosts, such as African green monkeys (AGMs), despite life-long high viral replication. Lack of disease progression was reportedly based on the ability of SIV-infected AGMs to prevent gut dysfunction, avoiding microbial translocation and the associated systemic immune activation and chronic inflammation. Yet, the maintenance of gut integrity has never been documented, and the mechanism(s) by which gut integrity is preserved are unknown. We sought to investigate the early events of SIV infection in AGMs, specifically examining the impact of SIVsab infection on the gut mucosa. Twenty-nine adult male AGMs were intrarectally infected with SIVsab92018 and serially sacrificed at well-defined stages of SIV infection, preramp-up (1-3 days post-infection (dpi)), ramp-up (4-6 dpi), peak viremia (9-12 dpi), and early chronic SIV infection (46-55 dpi), to assess the levels of immune activation, apoptosis, epithelial damage and microbial translocation in the GI tract and peripheral lymph nodes. Tissue viral loads, plasma cytokines and plasma markers of gut dysfunction were also measured throughout the course of early infection. While a strong, but transient, interferon-based inflammatory response was observed, the levels of plasma markers linked to enteropathy did not increase. Accordingly, no significant increases in apoptosis of either mucosal enterocytes or lymphocytes, and no damage to the mucosal epithelium were documented during early SIVsab infection of AGMs. These findings were supported by RNAseq of the gut tissue, which found no significant alterations in gene expression that would indicate microbial translocation. Thus, for the first time, we confirmed that gut epithelial integrity is preserved, with no evidence of microbial translocation, in AGMs throughout early SIVsab infection. This might protect AGMs from developing intestinal dysfunction and the subsequent chronic inflammation that drives both HIV disease progression and HIV-associated comorbidities.


Subject(s)
Intestinal Mucosa/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , Bacterial Translocation , Chlorocebus aethiops , Disease Progression , Gastrointestinal Microbiome , HIV Infections/immunology , HIV Infections/microbiology , HIV Infections/pathology , HIV Infections/virology , HIV-1/physiology , Humans , Intestinal Mucosa/microbiology , Male , Simian Acquired Immunodeficiency Syndrome/microbiology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology
3.
J Virol ; 92(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29925666

ABSTRACT

Current approaches do not eliminate all human immunodeficiency virus type 1 (HIV-1) maternal-to-infant transmissions (MTIT); new prevention paradigms might help avert new infections. We administered maraviroc (MVC) to rhesus macaques (RMs) to block CCR5-mediated entry, followed by repeated oral exposure of a CCR5-dependent clone of simian immunodeficiency virus (SIV) mac251 (SIVmac766). MVC significantly blocked the CCR5 coreceptor in peripheral blood mononuclear cells and tissue cells. All control animals and 60% of MVC-treated infant RMs became infected by the 6th challenge, with no significant difference between the number of exposures (P = 0.15). At the time of viral exposures, MVC plasma and tissue (including tonsil) concentrations were within the range seen in humans receiving MVC as a therapeutic. Both treated and control RMs were infected with only a single transmitted/founder variant, consistent with the dose of virus typical of HIV-1 infection. The uninfected RMs expressed the lowest levels of CCR5 on the CD4+ T cells. Ramp-up viremia was significantly delayed (P = 0.05) in the MVC-treated RMs, yet peak and postpeak viral loads were similar in treated and control RMs. In conclusion, in spite of apparent effective CCR5 blockade in infant RMs, MVC had a marginal impact on acquisition and only a minimal impact on the postinfection delay of viremia following oral SIV infection. Newly developed, more effective CCR5 blockers may have a more dramatic impact on oral SIV transmission than MVC.IMPORTANCE We have previously suggested that the very low levels of simian immunodeficiency virus (SIV) maternal-to-infant transmissions (MTIT) in African nonhuman primates that are natural hosts of SIVs are due to a low availability of target cells (CCR5+ CD4+ T cells) in the oral mucosa of the infants, rather than maternal and milk factors. To confirm this new MTIT paradigm, we performed a proof-of-concept study in which we therapeutically blocked CCR5 with maraviroc (MVC) and orally exposed MVC-treated and naive infant rhesus macaques to SIV. MVC had only a marginal effect on oral SIV transmission. However, the observation that the infant RMs that remained uninfected at the completion of the study, after 6 repeated viral challenges, had the lowest CCR5 expression on the CD4+ T cells prior to the MVC treatment appears to confirm our hypothesis, also suggesting that the partial effect of MVC is due to a limited efficacy of the drug. New, more effective CCR5 inhibitors may have a better effect in preventing SIV and HIV transmission.


Subject(s)
CCR5 Receptor Antagonists/administration & dosage , Cyclohexanes/administration & dosage , Infectious Disease Transmission, Vertical/prevention & control , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/transmission , Triazoles/administration & dosage , Animals , CCR5 Receptor Antagonists/pharmacokinetics , Cyclohexanes/pharmacokinetics , Humans , Infant , Maraviroc , Palatine Tonsil/chemistry , Serum/chemistry , Treatment Outcome , Triazoles/pharmacokinetics , Viral Load
4.
PLoS Pathog ; 12(1): e1005384, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26764484

ABSTRACT

Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab-infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Simian Acquired Immunodeficiency Syndrome/drug therapy , Thrombophilia/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Flow Cytometry , Immunohistochemistry , Inflammation/etiology , Intestines/drug effects , Intestines/microbiology , Macaca nemestrina , Male , Rifamycins/pharmacology , Rifaximin , Simian Acquired Immunodeficiency Syndrome/complications , Simian Immunodeficiency Virus , Sulfasalazine/pharmacology , Thrombophilia/etiology
5.
PLoS Pathog ; 12(9): e1005879, 2016 09.
Article in English | MEDLINE | ID: mdl-27632364

ABSTRACT

Viruses that persist despite seemingly effective antiretroviral treatment (ART) and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the "shock and kill" strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis)] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD) to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to ~106 copies/mL was followed by a decline to < 10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35-50 days, followed by in vivo experimental depletion of CD8+ cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (~104 copies/ml) peaking at 5-12 days post-treatment. CD8+ cell depletion resulted in a more robust viral rebound (107 copies/ml) that was controlled upon CD8+ T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control. Comparison of the patterns of virus rebound after RMD administration and CD8+ cell depletion suggested that RMD impact on T cells is only transient and does not irreversibly alter the ability of SIV-specific T cells to control the reactivated virus.


Subject(s)
Anti-Retroviral Agents/pharmacology , Depsipeptides/pharmacology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/physiology , Virus Replication/drug effects , Animals , CD8-Positive T-Lymphocytes/metabolism , Macaca mulatta , RNA, Viral/blood , Simian Acquired Immunodeficiency Syndrome/blood , Time Factors
6.
J Virol ; 89(11): 6155-60, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25833043

ABSTRACT

Simian immunodeficiency virus SIVsab infection is completely controlled in rhesus macaques (RMs) through functional immune responses. We report that in SIVsab-infected RMs, (i) viral replication is controlled to <0 to 3 copies/ml, (ii) about one-third of the virus strains in reservoirs are replication incompetent, and (iii) rebounding virus after CD8(+) cell depletion is replication competent and genetically similar to the original virus stock, suggesting early reservoir seeding. This model permits assessment of strategies aimed at depleting the reservoir without multidrug antiretroviral therapy.


Subject(s)
Immune Tolerance , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/physiology , Virus Replication , Animals , CD8-Positive T-Lymphocytes/immunology , Macaca mulatta , Male , Simian Immunodeficiency Virus/genetics
7.
J Virol ; 89(18): 9616-30, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26178986

ABSTRACT

UNLABELLED: The role of the adenosine (ADO) pathway in human immunodeficiency virus type 1/simian immunodeficiency virus (HIV-1/SIV) infection remains unclear. We compared SIVsab-induced changes of markers related to ADO production (CD39 and CD73) and breakdown (CD26 and adenosine deaminase) on T cells from blood, lymph nodes, and intestine collected from pigtailed macaques (PTMs) and African green monkeys (AGMs) that experience different SIVsab infection outcomes. We also measured ADO and inosine (INO) levels in tissues by mass spectrometry. Finally, we assessed the suppressive effect of ADO on proinflammatory cytokine production after T cell receptor stimulation. The baseline level of both CD39 and CD73 coexpression on regulatory T cells and ADO levels were higher in AGMs than in PTMs. Conversely, high INO levels associated with dramatic increases in CD26 expression and adenosine deaminase activity were observed in PTMs during chronic SIV infection. Immune activation and inflammation markers in the gut and periphery inversely correlated with ADO and directly correlated with INO. Ex vivo administration of ADO significantly suppressed proinflammatory cytokine production by T cells in both species. In conclusion, the opposite dynamics of ADO pathway-related markers and contrasting ADO/INO levels in species with divergent proinflammatory responses to SIV infection support a key role of ADO in controlling immune activation/inflammation in nonprogressive SIV infections. Changes in ADO levels predominately occurred in the gut, suggesting that the ADO pathway may be involved in sparing natural hosts of SIVs from developing SIV-related gut dysfunction. Focusing studies of the ADO pathway on mucosal sites of viral replication is warranted. IMPORTANCE: The mechanisms responsible for the severe gut dysfunction characteristic of progressive HIV and SIV infection in humans and macaques are not completely elucidated. We report that ADO may play a key role in controlling immune activation/inflammation in nonprogressive SIV infections by limiting SIV-related gut inflammation. Conversely, in progressive SIV infection, significant degradation of ADO occurs, possibly due to an early increase of ADO deaminase complexing protein 2 (CD26) and adenosine deaminase. Our study supports therapeutic interventions to offset alterations of this pathway during progressive HIV/SIV infections. These potential approaches to control chronic immune activation and inflammation during pathogenic SIV infection may prevent HIV disease progression.


Subject(s)
5'-Nucleotidase/immunology , Adenosine/immunology , Antigens, CD/immunology , Apyrase/immunology , Dipeptidyl Peptidase 4/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , T-Lymphocytes/immunology , Animals , Chlorocebus aethiops , Chronic Disease , Cytokines/immunology , Humans , Macaca nemestrina , Male , Receptors, Antigen, T-Cell/immunology , Simian Acquired Immunodeficiency Syndrome/pathology , T-Lymphocytes/pathology
8.
Clin Orthop Relat Res ; 474(7): 1649-56, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26831479

ABSTRACT

BACKGROUND: The continued presence of biofilm may be one cause of the high risk of failure observed with irrigation and débridement with component retention in acute periprosthetic joint infection (PJI). There is a poor understanding of the role of biofilm antibiotic tolerance in PJI. QUESTIONS/PURPOSES: (1) Do increasing doses of cefazolin result in decreased viable biofilm mass on arthroplasty materials? (2) Is cefazolin resistance phenotypic or genotypic? (3) Is biofilm viability a function of biofilm depth after treatment with cefazolin? (4) Is the toxin-antitoxin system, yoeB expression, associated with antibiotic stress? METHODS: Methicillin-sensitive Staphylococcus aureus biofilm was cultured on total knee arthroplasty (TKA) materials and exposed to increasing doses of cefazolin (control, 0.5, 1.0, 10.0, 100.0 µg/mL). Quantitative confocal microscopy and quantitative culture were used to measure viable biofilm cell density. To determine if cefazolin resistance was phenotypic or genotypic, we measured minimum inhibitory concentration (MIC) after exposure to different cefazolin concentrations; changes in MIC would suggest genotypic features, whereas unchanged MIC would suggest phenotypic behavior. Finally, quantitative reverse transcription-polymerase chain reaction was used to quantify expression of yoeB levels between biofilm and planktonic bacteria after exposure to 1 µg/mL cefazolin for 3 hours. RESULTS: Although live biofilm mass was reduced by exposure to cefazolin when compared with biofilm mass in controls (39.2 × 10(3) ± 26.4 × 10(3) pixels), where the level after 0.5 µg/mL exposure also showed reduced mass (20.3 × 10(3) ± 11.9 × 10(3) pixels), no further reduction was seen after higher doses (mass at 1.0 µg/mL: 5.0 × 10(3) pixels ± 1.1 × 10(3) pixels; at 10.0 µg/mL: 6.4 × 10(3) ± 9.6 × 10(3) pixels; at 100.0 µg/mL: 6.4 × 10(3) ± 3.9 × 10(3)). At the highest concentration tested (100 µg/mL), residual viable biofilm was present on all three materials, and there were no differences in percent biofilm survival among cobalt-chromium (18.5% ± 15.1%), polymethylmethacrylate (22.8% ± 20.2%), and polyethylene (14.7% ± 10.4%). We found that tolerance was a phenotypic phenomenon, because increasing cefazolin exposure did not result in changes in MIC as compared with controls (MIC in controls: 0.13 ± 0.02; at 0.5 µg/mL: 0.13 ± 0.001, p = 0.96; at 1.0 µg/m: 0.14 ± 0.04, p = 0.95; at 10.0 µg/m: 0.11 ± 0.016, p = 0.47; at 100.0 µg/m: 0.94 ± 0.047, p = 0.47). Expression of yoeB after 1 µg/mL cefazolin for 3 hours in biofilm cells was greater in biofilm but not in planktonic cells (biofilm: 62.3-fold change, planktonic cells: -78.8-fold change, p < 0.001). CONCLUSIONS: Antibiotics are inadequate at complete removal of the biofilm from the surface of TKA materials. Results suggest that bacterial persisters are responsible for this phenotypic behavior allowing biofilm high tolerance to antibiotics. CLINICAL RELEVANCE: Antibiotic-tolerant biofilm suggests a mechanism behind the poor results in irrigation and débridement for acute TKA PJI.


Subject(s)
Anti-Bacterial Agents/pharmacology , Arthroplasty, Replacement, Knee/adverse effects , Biofilms/drug effects , Cefazolin/pharmacology , Drug Resistance, Bacterial , Knee Prosthesis/adverse effects , Prosthesis-Related Infections/drug therapy , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Arthroplasty, Replacement, Knee/instrumentation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Biofilms/growth & development , Dose-Response Relationship, Drug , Drug Resistance, Bacterial/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Knee Prosthesis/microbiology , Methicillin/pharmacology , Microbial Sensitivity Tests , Microbial Viability/drug effects , Microscopy, Confocal , Phenotype , Prosthesis Design , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/microbiology , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism
9.
J Virol ; 88(10): 5687-705, 2014 May.
Article in English | MEDLINE | ID: mdl-24623416

ABSTRACT

UNLABELLED: African green monkeys (AGMs) are naturally infected with simian immunodeficiency virus (SIV) at high prevalence levels and do not progress to AIDS. Sexual transmission is the main transmission route in AGM, while mother-to-infant transmission (MTIT) is negligible. We investigated SIV transmission in wild AGMs to assess whether or not high SIV prevalence is due to differences in mucosal permissivity to SIV (i.e., whether the genetic bottleneck of viral transmission reported in humans and macaques is also observed in AGMs in the wild). We tested 121 sabaeus AGMs (Chlorocebus sabaeus) from the Gambia and found that 53 were SIV infected (44%). By combining serology and viral load quantitation, we identified 4 acutely infected AGMs, in which we assessed the diversity of the quasispecies by single-genome amplification (SGA) and documented that a single virus variant established the infections. We thus show that natural SIV transmission in the wild is associated with a genetic bottleneck similar to that described for mucosal human immunodeficiency virus (HIV) transmission in humans. Flow cytometry assessment of the immune cell populations did not identify major differences between infected and uninfected AGM. The expression of the SIV coreceptor CCR5 on CD4+ T cells dramatically increased in adults, being higher in infected than in uninfected infant and juvenile AGMs. Thus, the limited SIV MTIT in natural hosts appears to be due to low target cell availability in newborns and infants, which supports HIV MTIT prevention strategies aimed at limiting the target cells at mucosal sites. Combined, (i) the extremely high prevalence in sexually active AGMs, (ii) the very efficient SIV transmission in the wild, and (iii) the existence of a fraction of multiparous females that remain uninfected in spite of massive exposure to SIV identify wild AGMs as an acceptable model of exposed, uninfected individuals. IMPORTANCE: We report an extensive analysis of the natural history of SIVagm infection in its sabaeus monkey host, the African green monkey species endemic to West Africa. Virtually no study has investigated the natural history of SIV infection in the wild. The novelty of our approach is that we report for the first time that SIV infection has no discernible impact on the major immune cell populations in natural hosts, thus confirming the nonpathogenic nature of SIV infection in the wild. We also focused on the correlates of SIV transmission, and we report, also for the first time, that SIV transmission in the wild is characterized by a major genetic bottleneck, similar to that described for HIV-1 transmission in humans. Finally, we report here that the restriction of target cell availability is a major correlate of the lack of SIV transmission to the offspring in natural hosts of SIVs.


Subject(s)
Lentivirus Infections/veterinary , Monkey Diseases/transmission , Monkey Diseases/virology , Simian Immunodeficiency Virus/isolation & purification , Animals , Chlorocebus aethiops , Cluster Analysis , Female , Flow Cytometry , Gambia , Genotype , Lentivirus Infections/immunology , Lentivirus Infections/transmission , Lentivirus Infections/virology , Lymphocyte Subsets/immunology , Male , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Simian Immunodeficiency Virus/classification , Simian Immunodeficiency Virus/genetics
10.
J Virol ; 88(12): 6778-92, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24696477

ABSTRACT

UNLABELLED: While simian immunodeficiency viruses (SIVs) are generally nonpathogenic in their natural hosts, dramatic increases in pathogenicity may occur upon cross-species transmission to new hosts. Deciphering the drivers of these increases in virulence is of major interest for understanding the emergence of new human immunodeficiency viruses (HIVs). We transmitted SIVsab from the sabaeus species of African green monkeys (AGMs) to pigtailed macaques (PTMs). High acute viral replication occurred in all SIVsab-infected PTMs, yet the outcome of chronic infection was highly variable, ranging from rapid progression to controlled infection, which was independent of the dynamics of acute viral replication, CD4(+) T cell depletion, or preinfection levels of microbial translocation. Infection of seven PTMs with plasma collected at necropsy from a rapid-progressor PTM was consistently highly pathogenic, with high acute and chronic viral replication, massive depletion of memory CD4(+) T cells, and disease progression in all PTMs. The plasma inoculum used for the serial passage did not contain adventitious bacterial or viral contaminants. Single-genome amplification showed that this inoculum was significantly more homogenous than the inoculum directly derived from AGMs, pointing to a strain selection in PTMs. In spite of similar peak plasma viral loads between the monkeys in the two passages, immune activation/inflammation levels dramatically increased in PTMs infected with the passaged virus. These results suggest that strain selection and a massive cytokine storm are major factors behind increased pathogenicity of SIV upon serial passage and adaptation of SIVs to new hosts following cross-species transmission. IMPORTANCE: We report here that upon cross-species transmission and serial passage of SIVsab from its natural host, the sabaeus African green monkey (AGM), to a new host, the pigtailed macaque (PTM), viral adaptation and increased pathogenicity involve strain selection and a massive cytokine storm. These results permit the design of strategies aimed at preventing cross-species transmission from natural hosts of SIVs to humans in areas of endemicity. Furthermore, our study describes a new animal model for SIV infection. As the outcomes of SIVsab infection in PTMs, African green monkeys, and rhesus macaques are different, the use of these systems enables comparative studies between pathogenic, nonpathogenic, and elite-controlled infections, to gain insight into the mechanisms of SIV immunodeficiency and comorbidities.


Subject(s)
Host Specificity , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Chlorocebus aethiops , HIV/genetics , HIV/pathogenicity , HIV/physiology , HIV Infections/immunology , HIV Infections/transmission , HIV Infections/virology , Humans , Macaca nemestrina , Serial Passage , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/physiology , Virulence , Virus Replication
11.
PLoS Pathog ; 9(1): e1003011, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23349627

ABSTRACT

Pathogenesis studies of SIV infection have not been performed to date in wild monkeys due to difficulty in collecting and storing samples on site and the lack of analytical reagents covering the extensive SIV diversity. We performed a large scale study of molecular epidemiology and natural history of SIVagm infection in 225 free-ranging AGMs from multiple locations in South Africa. SIV prevalence (established by sequencing pol, env, and gag) varied dramatically between infant/juvenile (7%) and adult animals (68%) (p<0.0001), and between adult females (78%) and males (57%). Phylogenetic analyses revealed an extensive genetic diversity, including frequent recombination events. Some AGMs harbored epidemiologically linked viruses. Viruses infecting AGMs in the Free State, which are separated from those on the coastal side by the Drakensberg Mountains, formed a separate cluster in the phylogenetic trees; this observation supports a long standing presence of SIV in AGMs, at least from the time of their speciation to their Plio-Pleistocene migration. Specific primers/probes were synthesized based on the pol sequence data and viral loads (VLs) were quantified. VLs were of 10(4)-10(6) RNA copies/ml, in the range of those observed in experimentally-infected monkeys, validating the experimental approaches in natural hosts. VLs were significantly higher (10(7)-10(8) RNA copies/ml) in 10 AGMs diagnosed as acutely infected based on SIV seronegativity (Fiebig II), which suggests a very active transmission of SIVagm in the wild. Neither cytokine levels (as biomarkers of immune activation) nor sCD14 levels (a biomarker of microbial translocation) were different between SIV-infected and SIV-uninfected monkeys. This complex algorithm combining sequencing and phylogeny, VL quantification, serology, and testing of surrogate markers of microbial translocation and immune activation permits a systematic investigation of the epidemiology, viral diversity and natural history of SIV infection in wild African natural hosts.


Subject(s)
Chlorocebus aethiops , Evolution, Molecular , Genetic Variation , Simian Acquired Immunodeficiency Syndrome/epidemiology , Simian Immunodeficiency Virus/isolation & purification , Animals , Base Sequence , Female , Host-Pathogen Interactions , Male , Molecular Sequence Data , Mutation Rate , Recombination, Genetic , Repetitive Sequences, Nucleic Acid , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , South Africa/epidemiology
12.
PLoS Pathog ; 9(10): e1003600, 2013.
Article in English | MEDLINE | ID: mdl-24098110

ABSTRACT

We assessed the role of myeloid dendritic cells (mDCs) in the outcome of SIV infection by comparing and contrasting their frequency, mobilization, phenotype, cytokine production and apoptosis in pathogenic (pigtailed macaques, PTMs), nonpathogenic (African green monkeys, AGMs) and controlled (rhesus macaques, RMs) SIVagmSab infection. Through the identification of recently replicating cells, we demonstrated that mDC mobilization from the bone marrow occurred in all species postinfection, being most prominent in RMs. Circulating mDCs were depleted with disease progression in PTMs, recovered to baseline values after the viral peak in AGMs, and significantly increased at the time of virus control in RMs. Rapid disease progression in PTMs was associated with low baseline levels and incomplete recovery of circulating mDCs during chronic infection. mDC recruitment to the intestine occurred in all pathogenic scenarios, but loss of mucosal mDCs was associated only with progressive infection. Sustained mDC immune activation occurred throughout infection in PTMs and was associated with increased bystander apoptosis in blood and intestine. Conversely, mDC activation occurred only during acute infection in nonprogressive and controlled infections. Postinfection, circulating mDCs rapidly became unresponsive to TLR7/8 stimulation in all species. Yet, stimulation with LPS, a bacterial product translocated in circulation only in SIV-infected PTMs, induced mDC hyperactivation, apoptosis and excessive production of proinflammatory cytokines. After infection, spontaneous production of proinflammatory cytokines by mucosal mDCs increased only in progressor PTMs. We thus propose that mDCs promote tolerance to SIV in the biological systems that lack intestinal dysfunction. In progressive infections, mDC loss and excessive activation of residual mDCs by SIV and additional stimuli, such as translocated microbial products, enhance generalized immune activation and inflammation. Our results thus provide a mechanistic basis for the role of mDCs in the pathogenesis of AIDS and elucidate the causes of mDC loss during progressive HIV/SIV infections.


Subject(s)
Cell Movement/immunology , Dendritic Cells/immunology , Myeloid Cells/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Apoptosis/immunology , Bone Marrow/immunology , Bone Marrow/pathology , Bystander Effect/immunology , Chlorocebus aethiops , Dendritic Cells/pathology , Myeloid Cells/pathology , Simian Acquired Immunodeficiency Syndrome/pathology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 8/immunology
13.
J Biol Chem ; 288(40): 28824-30, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-23960074

ABSTRACT

Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell growth and metabolism. Its activity is controlled by various types of signals, including growth factors, nutrients, and stresses. In this study, we show that changes in expression levels of two antiapoptotic proteins, Bcl-2 and Bcl-XL, also affect mTORC1 signaling activity. In cells overexpressing Bcl-XL, mTORC1 activity is increased and becomes less sensitive to growth factor or nutrient conditions. In contrast, reduction in expression levels of the two antiapoptotic proteins inhibits mTORC1 signaling activity. Our results suggest that the effect of Bcl-2 and Bcl-XL on mTORC1 is mediated by FKBP38, an inhibitor of mTORC1. The two proteins compete with mTORC1 for FKBP38 binding and hence alter mTORC1 activity. This study reveals a novel cross-talk between Bcl-2/XL and mTORC1 signaling, which is likely to contribute to cancer development.


Subject(s)
Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , bcl-X Protein/metabolism , Apoptosis , Down-Regulation , Gene Knockdown Techniques , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Mitochondria/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Binding , Protein Transport , Tacrolimus Binding Proteins/metabolism
14.
Blood ; 120(7): 1357-66, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22653975

ABSTRACT

HIV infection is associated with increased risk of cardiovascular complications, the underlying mechanism of which remains unclear. Plasma levels of the coagulation biomarker D-dimer (DD) correlate with increased mortality and cardiovascular events in HIV-infected patients. We compared the incidence of cardiovascular lesions and the levels of the coagulation markers DD and thrombin antithrombin in pathogenic SIV infections of rhesus and pigtailed macaques (PTMs) and in nonpathogenic SIV infection of African green monkeys (AGMs) and sooty mangabeys. Hypercoagulability and cardiovascular pathology were only observed in pathogenic SIV infections. In PTMs infected with SIV from AGMs (SIVagm), DD levels were highly indicative of AIDS progression and increased mortality and were associated with cardiovascular lesions, pointing to SIVagm-infected PTMs as an ideal animal model for the study of HIV-associated cardiovascular disease. In pathogenic SIV infection, DD increased early after infection, was strongly correlated with markers of immune activation/inflammation and microbial translocation (MT), and was only peripherally associated with viral loads. Endotoxin administration to SIVagm-infected AGMs (which lack chronic SIV-induced MT and immune activation) resulted in significant increases of DD. Our results demonstrate that hypercoagulation and cardiovascular pathology are at least in part a consequence of excessive immune activation and MT in SIV infection.


Subject(s)
Blood Coagulation , Disease Progression , Primates/blood , Primates/virology , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/physiology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antithrombins/metabolism , Biomarkers/blood , Blood Coagulation/drug effects , Cardiovascular Diseases/pathology , Cercocebus/blood , Cercocebus/virology , Chlorocebus aethiops , Chronic Disease , Fibrin Fibrinogen Degradation Products/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/pharmacology , Macaca/blood , Macaca/virology , Receptors, Cell Surface/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Solubility/drug effects , Thrombin/metabolism , Time Factors
15.
Arch Bone Jt Surg ; 12(2): 102-107, 2024.
Article in English | MEDLINE | ID: mdl-38420518

ABSTRACT

Objectives: Synovial fluid or tissue culture is the current gold standard for diagnosis of infection, but Cutibacterium acnes (C. acnes) is a frequent cause of shoulder PJI and is a notoriously fastidious organism. The purpose of this study was to compare quantitative real-time polymerase chain reaction (qRT-PCR) to standard culture as a more rapid, sensitive means of identifying C. acnes from the glenohumeral joint. We hypothesized that qRT-PCR would be more effective than standard culture at identifying C. acnes and would have greater sensitivity and specificity for detecting infection. Methods: This was a prospective observational study with 100 consecutive patients undergoing arthroscopic or open shoulder surgery with known positive and negative controls. Intraoperatively, synovial fluid and tissue was obtained for C. acnes qRT-PCR and results were blinded to the gold standard microbiology cultures. Results: Clinical review demonstrated 3 patients (3%) with positive cultures, none of which were positive for C. acnes. Of the samples tested by the C. acnes qRT-PCR standard curve, 12.2% of tissue samples and 4.5% of fluid samples were positive. Culture sensitivity was 60.0%, specificity was 100.0%, PPV was 100.0%, and NPV was 97.9%. C. acnes qRT-PCR standard curve sensitivity, specificity, PPV, and NPV was 60.0%, 90.3%, 25.0%, and 97.7% respectively for tissue specimens and 0%, 95.2%, 0%, and 95.2% respectively, for fluid specimens. For combination of culture and tissue qRT-PCR, the sensitivity, specificity, PPV and NPV was 100%, 90.3%, 35.7%, and 100%, respectively. Conclusion: We report that qRT-PCR for C. acnes identified the organism more frequently than conventional culture. While these findings demonstrate the potential utility of qRT-PCR, the likelihood of false positive results of qRT-PCR should be considered. Thus, qRT-PCR may be useful as an adjuvant to current gold standard workup of synovial fluid or tissue culture for the diagnosis of infection.

16.
J Virol ; 86(8): 4158-68, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22318138

ABSTRACT

African green monkeys (AGMs) are naturally infected with a simian immunodeficiency virus (SIVagm) that is nonpathogenic in its host. Although SIVagm is common and widespread, little is known about the mechanisms that govern its transmission. Since the earliest virus-host interactions may provide key insights into the nonpathogenic phenotype of SIVagm, we developed a mucosal transmission model for this virus. Using plasma from an acutely infected AGM as the virus inoculum, we exposed adult and juvenile AGMs, as well as pigtailed macaques (PTMs) as a nonnatural host control, by mucosal routes to increasing titers of virus and compared the doses needed to establish a productive infection. Four juvenile and four adult AGMs as well as two PTMs were intrarectally (IR) exposed, while two additional adult female AGMs were intravaginally (IVAG) exposed. No animal became infected following exposure to 10(5) RNA copies. Both PTMs but none of the AGMs became infected following exposure to 10(6) RNA copies. Finally, all adult AGMs and two of the four juvenile AGMs became infected following exposure to 10(7) RNA copies, acquiring either one (2 IR infected juveniles, 1 IR infected adult, 2 IVAG infected adults) or two (3 IR infected adults) transmitted founder viruses. These results were consistent with immunophenotypic data, which revealed a significant correlation between the percentage of CD4(+) T cells expressing CCR5 in the mucosa and the susceptibility to infection, in terms of both the viral dose and the numbers of transmitted founder viruses. Moreover, studies of uninfected AGMs showed that the fraction of CCR5-expressing CD4(+) T cells increased significantly with age. These results indicate that (i) AGMs are readily infected with SIVagm by both intrarectal and intravaginal routes, (ii) susceptibility to infection is proportional to the number of available CCR5(+) CD4(+) target cells in the mucosa, and (iii) the paucity of CCR5(+) CD4(+) target cells in infant and juvenile AGMs may explain the near absence of vertical transmission.


Subject(s)
Mucous Membrane/immunology , Mucous Membrane/virology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Immunodeficiency Virus/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Chlorocebus aethiops , Disease Susceptibility/immunology , Evolution, Molecular , Female , Macaca nemestrina , Male , Phylogeny , Receptors, CCR5/immunology , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus/classification , Simian Immunodeficiency Virus/genetics , Viral Envelope Proteins/genetics
17.
Sci Rep ; 13(1): 4593, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944677

ABSTRACT

Antibiotic stewardship is viewed as having great public health benefit with limited direct benefit to the patient at the time of administration. The objective of our study was to determine if inappropriate administration of antibiotics could create conditions that would increase the rates of surgical infection. We hypothesized that sub-MIC levels of vancomycin would increase Staphylococcus aureus growth, biofilm formation, and rates of infection. S. aureus MRSA and MSSA strains were used for all experiments. Bacteria were grown planktonically and monitored using spectrophotometry. Quantitative agar culture was used to measure planktonic and biofilm bacterial burden. A mouse abscess model was used to confirm phenotypes in vivo. In the planktonic growth assay, increases in bacterial burden at » MIC vancomycin were observed in USA300 JE2 by 72 h. Similar findings were observed with ½ MIC in Newman and SH1000. For biofilm formation, USA300 JE2 at » and ½ MIC vancomycin increased biofilm formation by approximately 1.3- and 2.3-fold respectively at 72 h as compared to untreated controls. Similar findings were observed with Newman and SH1000 with a 2.4-fold increase in biofilm formation at ½ MIC vancomycin. In a mouse abscess model, there was a 1.2-fold increase with sub-MIC vancomycin at 3 days post infection. Our study showed that Sub-optimal vancomycin dosing promoted S. aureus planktonic growth and biofilm formation, phenotypic measures of bacterial virulence. This phenotype induced by sub-MIC levels of vancomycin was also observed to increase rates of infection and pathogenesis in our mouse model. Risks of exposure to sub-MIC concentrations with vancomycin in surgical procedures are greater as there is decreased bioavailability in tissue in comparison to other antibiotics. This highlights the importance of proper antibiotic selection, stewardship, and dosing for both surgical prophylaxis and treatment of infection.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Mice , Vancomycin/pharmacology , Vancomycin/therapeutic use , Staphylococcus aureus , Surgical Wound Infection , Abscess , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/prevention & control , Staphylococcal Infections/microbiology , Biofilms , Microbial Sensitivity Tests
18.
Nat Commun ; 14(1): 6657, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37863982

ABSTRACT

Whether CD8+ T lymphocytes control human immunodeficiency virus infection by cytopathic or non-cytopathic mechanisms is not fully understood. Multiple studies highlighted non-cytopathic effects, but one hypothesis is that cytopathic effects of CD8+ T cells occur before viral production. Here, to examine the role of CD8+ T cells prior to virus production, we treated SIVmac251-infected macaques with an integrase inhibitor combined with a CD8-depleting antibody, or with either reagent alone. We analyzed the ensuing viral dynamics using a mathematical model that included infected cells pre- and post- viral DNA integration to compare different immune effector mechanisms. Macaques receiving the integrase inhibitor alone experienced greater viral load decays, reaching lower nadirs on treatment, than those treated also with the CD8-depleting antibody. Models including CD8+ cell-mediated reduction of viral production (non-cytolytic) were found to best explain the viral profiles across all macaques, in addition an effect in killing infected cells pre-integration (cytolytic) was supported in some of the best models. Our results suggest that CD8+ T cells have both a cytolytic effect on infected cells before viral integration, and a direct, non-cytolytic effect by suppressing viral production.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Humans , Animals , CD8-Positive T-Lymphocytes , Macaca mulatta , Integrase Inhibitors/pharmacology , Viral Load , Virus Replication
19.
Nat Commun ; 14(1): 979, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813761

ABSTRACT

CD4+ T-cell depletion is a hallmark of HIV infection, leading to impairment of cellular immunity and opportunistic infections, but its contribution to SIV/HIV-associated gut dysfunction is unknown. Chronically SIV-infected African Green Monkeys (AGMs) partially recover mucosal CD4+ T-cells, maintain gut integrity and do not progress to AIDS. Here we assess the impact of prolonged, antibody-mediated CD4 + T-cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T-cells and >90% of mucosal CD4+ T-cells are depleted. Plasma viral loads and cell-associated viral RNA in tissues are lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintain gut integrity, control immune activation and do not progress to AIDS. We thus conclude that CD4+ T-cell depletion is not a determinant of SIV-related gut dysfunction, when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T-cell restoration in SIVagm-infected AGMs.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Chlorocebus aethiops , Disease Progression , CD4-Positive T-Lymphocytes
20.
J Orthop Res ; 40(2): 420-428, 2022 02.
Article in English | MEDLINE | ID: mdl-33713379

ABSTRACT

Staphylococcus aureus is a common organism in orthopedic infections, but little is known about the genetic diversity of strains during an infectious process. Using periprosthetic joint infection (PJI) as a model, a prospective study was designed to quantify genetic variation among S. aureus strains both among and within patients. Whole genome sequencing and multilocus sequence typing was performed to genotype these two populations at high resolution. In nasal cultures, 78% of strains were of clonal complexes CC5, CC8, and CC30. In PJI cultures, only 63% could be classified in these common clonal complexes. The PJI cultures had a larger proportion of atypical strains, and these atypical strains were associated with poor host status and compromised immune conditions. Mutations in genes involved in fibronectin binding (ebh, fnbA, clfA, and clfB) systematically distinguished later PJI isolates from the first PJI isolate from each patient. Repeated mutations in S. aureus genes associated with extracellular matrix binding were identified, suggesting adaptive, parallel evolution of S. aureus during the development of PJI.


Subject(s)
Arthritis, Infectious , Staphylococcal Infections , Arthritis, Infectious/etiology , Genotype , Humans , Prospective Studies , Staphylococcus aureus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL