Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Biotechnol Biotechnol Equip ; 29(1): 10-14, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-26019613

ABSTRACT

In order to study the survival mechanisms to drought stress for fruit body of Auricularia auricula, soluble carbohydrates and respiratory enzymes were investigated. Fruit bodies were exposed to sunlight and were naturally dehydrated. Samples were taken at different levels of water loss (0%, 10%, 30%, 50% and 70%) to measure the content of soluble sugars and polysaccharides. The activities of phosphoglucose isomerase (PGI), combined glucose-6-phosphate dehydrogenase (G-6-PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), and malate dehydrogenase (MDH), were also determined. The results showed that with the increase in water loss, soluble sugars and MDH activity declined, whereas the activities of G-6-PDH and 6-PGDH increased. Soluble polysaccharides content and PGI activity decreased with water loss up to 30% and increased afterwards. These results suggested that the pentose phosphate pathway (PPP), as demonstrated by activities of G-6-PDH and 6-PGDH, could be one of the mechanisms for survival during drought stress in the fruit body of A. auricula. Moreover, soluble polysaccharides may play a part in protecting the fruit body in further drought stress.

2.
World J Microbiol Biotechnol ; 30(1): 119-24, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23861039

ABSTRACT

Fruit bodies of Auricularia auricula-judae are often subjected to drought stress and became dormant. The responses of antioxidant defenses and membrane damage to drought stress were investigated in this study. Picked fruit bodies were exposed to sunlight and dehydrated naturally and samples were collected at different levels of water loss (0, 10, 30, 50, and 70%) for determination of electrolyte leakage (EL); contents of malondialdehyde (MDA), ascorbic acid (AsA) and reduced glutathione (GSH); and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). Results showed that membrane permeability (assessed by EL) and membrane lipid peroxidation (MDA content) remained unchanged at all levels of water loss studied. Contents of AsA and GSH showed no change at 0, 10 and 30% of water loss, however, both of them increased significantly at 50 and 70% of water loss. SOD activity significantly increased with the rising of water loss from 0 to 30%, reached the peak at 30 and 50% of water loss, and then significantly decreased at 70% of water loss. A gradual increase in POD and CAT activities was observed when water loss rose from 0 to 50%. As water loss went up to 70%, POD activity remained the same as that at 50%, but CAT activity decreased. The results indicate that the increased activities of enzymatic antioxidants (SOD, CAT and POD) and contents of non-enzymatic antioxidants (AsA and GSH) in fruit bodies of A. auricula-judae can effectively scavenge reactive oxygen species, cause no damage to cell membranes as demonstrated by the unchanged EL and MDA content, and contribute to dormancy under drought stress.


Subject(s)
Antioxidants/metabolism , Basidiomycota/physiology , Cell Membrane/physiology , Desiccation , Droughts , Fruiting Bodies, Fungal/physiology , Oxidative Stress , Catalase/metabolism , Peroxidase/metabolism , Stress, Physiological , Superoxide Dismutase/metabolism
3.
J Virol ; 86(3): 1789-801, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22114333

ABSTRACT

The influenza A virus M2 ion channel protein has the longest cytoplasmic tail (CT) among the three viral envelope proteins and is well conserved between different viral strains. It is accessible to the host cellular machinery after fusion with the endosomal membrane and during the trafficking, assembly, and budding processes. We hypothesized that identification of host cellular interactants of M2 CT could help us to better understand the molecular mechanisms regulating the M2-dependent stages of the virus life cycle. Using yeast two-hybrid screening with M2 CT as bait, a novel interaction with the human annexin A6 (AnxA6) protein was identified, and their physical interaction was confirmed by coimmunoprecipitation assay and a colocalization study of virus-infected human cells. We found that small interfering RNA (siRNA)-mediated knockdown of AnxA6 expression significantly increased virus production, while its overexpression could reduce the titer of virus progeny, suggesting a negative regulatory role for AnxA6 during influenza A virus infection. Further characterization revealed that AnxA6 depletion or overexpression had no effect on the early stages of the virus life cycle or on viral RNA replication but impaired the release of progeny virus, as suggested by delayed or defective budding events observed at the plasma membrane of virus-infected cells by transmission electron microscopy. Collectively, this work identifies AnxA6 as a novel cellular regulator that targets and impairs the virus budding and release stages of the influenza A virus life cycle.


Subject(s)
Annexin A6/metabolism , Viral Matrix Proteins/metabolism , Base Sequence , DNA Primers , Humans , Immunoprecipitation , Protein Binding , RNA, Small Interfering , Real-Time Polymerase Chain Reaction
4.
Elife ; 92020 06 09.
Article in English | MEDLINE | ID: mdl-32515732

ABSTRACT

The squalene-based oil-in-water emulsion (SE) vaccine adjuvant MF59 has been administered to more than 100 million people in more than 30 countries, in both seasonal and pandemic influenza vaccines. Despite its wide use and efficacy, its mechanisms of action remain unclear. In this study we demonstrate that immunization of mice with MF59 or its mimetic AddaVax (AV) plus soluble antigen results in robust antigen-specific antibody and CD8 T cell responses in lymph nodes and non-lymphoid tissues. Immunization triggered rapid RIPK3-kinase dependent necroptosis in the lymph node which peaked at 6 hr, followed by a sequential wave of apoptosis. Immunization with alum plus antigen did not induce RIPK3-dependent signaling. RIPK3-dependent signaling induced by MF59 or AV was essential for cross-presentation of antigen to CD8 T cells by Batf3-dependent CD8+ DCs. Consistent with this, RIPK3 deficient or Batf3 deficient mice were impaired in their ability to mount adjuvant-enhanced CD8 T cell responses. However, CD8 T cell responses were unaffected in mice deficient in MLKL, a downstream mediator of necroptosis. Surprisingly, antibody responses were unaffected in RIPK3-kinase or Batf3 deficient mice. In contrast, antibody responses were impaired by in vivo administration of the pan-caspase inhibitor Z-VAD-FMK, but normal in caspase-1 deficient mice, suggesting a contribution from apoptotic caspases, in the induction of antibody responses. These results demonstrate that squalene emulsion-based vaccine adjuvants induce antigen-specific CD8 T cell and antibody responses, through RIPK3-dependent and-independent pathways, respectively.


Subject(s)
Adjuvants, Immunologic , Antibody Formation , CD8-Positive T-Lymphocytes/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Squalene/immunology , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Emulsions , Immunity, Innate , Lymph Nodes/cytology , Lymph Nodes/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Polysorbates , Repressor Proteins/metabolism
5.
PLoS One ; 11(5): e0156573, 2016.
Article in English | MEDLINE | ID: mdl-27232188

ABSTRACT

Combination of CVCVA5 adjuvant and commercial avian influenza (AI) vaccine has been previously demonstrated to provide good protection against different AI viruses in chickens. In this study, we further investigated the protective immunity of CVCVA5-adjuvanted oil-emulsion inactivated AI vaccine in chickens, ducks and geese. Compared to the commercial H5 inactivated vaccine, the H5-CVCVA5 vaccine induced significantly higher titers of hemaglutinin inhibitory antibodies in three lines of broiler chickens and ducks, elongated the antibody persistence periods in geese, elevated the levels of cross serum neutralization antibody against different clade and subclade H5 AI viruses in chicken embryos. High levels of mucosal antibody were detected in chickens injected with the H5 or H9-CVCA5 vaccine. Furthermore, cellular immune response was markedly improved in terms of increasing the serum levels of cytokine interferon-γ and interleukine 4, promoting proliferation of splenocytes and upregulating cytotoxicity activity in both H5- and H9-CVCVA5 vaccinated chickens. Together, these results provide evidence that AI vaccines supplemented with CVCVA5 adjuvant is a promising approach for overcoming the limitation of vaccine strain specificity of protection.


Subject(s)
Adjuvants, Immunologic/pharmacology , Birds/immunology , Birds/virology , Influenza Vaccines/immunology , Influenza in Birds/virology , Oils/chemistry , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Antigens, Viral , Cell Proliferation/drug effects , Chickens/immunology , Chickens/virology , Cross Reactions , Ducks/immunology , Ducks/virology , Emulsions , Geese/immunology , Geese/virology , Interferon-gamma/blood , Interleukin-4/blood , Lymphocytes/cytology , Lymphocytes/drug effects , Vaccines, Inactivated/immunology
6.
Cell Host Microbe ; 20(1): 83-90, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27247001

ABSTRACT

The recent Zika virus (ZIKV) outbreak in Brazil has been directly linked to increased cases of microcephaly in newborns. Current evidence indicates that ZIKV is transmitted vertically from mother to fetus. However, the mechanism of intrauterine transmission and the cell types involved remain unknown. We demonstrate that the contemporary ZIKV strain PRVABC59 (PR 2015) infects and replicates in primary human placental macrophages, called Hofbauer cells, and to a lesser extent in cytotrophoblasts, isolated from villous tissue of full-term placentae. Viral replication coincides with induction of type I interferon (IFN), pro-inflammatory cytokines, and antiviral gene expression, but with minimal cell death. Our results suggest a mechanism for intrauterine transmission in which ZIKV gains access to the fetal compartment by directly infecting placental cells and disrupting the placental barrier.


Subject(s)
Macrophages/virology , Placenta/cytology , Viral Tropism , Virus Replication , Zika Virus/physiology , Cell Death , Cells, Cultured , Cytokines/metabolism , Female , Humans , Pregnancy , Trophoblasts/virology
7.
Vaccine ; 27(6): 904-10, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19095026

ABSTRACT

Genotype VII Newcastle disease virus (NDV) has been documented as the predominant epidemic genotype in China and some other Asian countries since 1990s. Recent work has demonstrated that NDV vaccines phylogenetically closer to epidemic viruses provide better protection than conventional vaccines in terms of reducing virus shedding and transmission. Since there is currently no available vaccine which possesses a close antigenic relationship to the prevalent virulent NDV, a new vaccine to protect against the infection of this genotype NDV is in urgent need. Here, we describe the generation of a pathogenicity-attenuated genotype VII NDV (NDV/ZJ1HN) from a velogenic NDV by mutating the velogenic amino acid motif at the F protein cleavage site using reverse genetics techniques. The attenuated-pathogenicity of NDV/ZJ1HN was confirmed by examination of mean death time (MDT) in embryonated eggs and intracerebral pathogenicity index (ICPI) in day-old chickens. Subsequently, 2 weeks old birds were immunized with live and inactivated NDV/ZJ1HN-based vaccines and challenged 3 or 4 weeks post-immunization with a lethal dose of a virulent genotype VII NDV strain. Results showed that NDV/ZJ1HN effectively protected the vaccinated birds from morbidity and mortality against genotype VII virus challenge and significantly reduced virus shedding from the vaccinated birds when compared with La Sota vaccinated animals, suggesting that NDV/ZJ1HN is a promising vaccine candidate for the control of current ND epidemic in China.


Subject(s)
Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Newcastle disease virus/pathogenicity , Viral Vaccines/immunology , Amino Acid Substitution , Animals , Chick Embryo , Chickens , China , Cloaca/virology , Geese , Mutagenesis, Site-Directed , Newcastle disease virus/genetics , Oropharynx/virology , Survival Analysis , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Fusion Proteins/genetics , Viral Vaccines/genetics , Virulence , Virus Shedding
8.
Bing Du Xue Bao ; 25(2): 117-24, 2009 Mar.
Article in Zh | MEDLINE | ID: mdl-19678566

ABSTRACT

Twenty Newcastle disease virus (NDV) strains were isolated from chickens and geese in the field outbreaks during 2005 and 2006 in some regions of Jiangsu and Guangxi province. Assessment of the virulence by MDT and ICPI, RT-PCR and sequence analysis of fusion protein gene were used to compare the properties of NDV isolates. The results indicated that MDT and ICPI of the isolates were 45.3h - 58.2h and 1.61 - 2.00 respectively, which confirmed that the all NDV isolates were highly virulent. And their hemagglutinin were not resistant to heat and belonged to fast pattern of elution. The results of nucleotide sequencing and phylogentic analysis of fusion protein gene showed that the twenty strains shared homology from 79.7% to 100% among themselves, from 78.1% to 83.4% and from 80.2% to 90.1% with NDV LaSota, F48E8, respectively. The putative amino acid sequences of fusion protein at the cleavage sites of all the isolates were 112R-R-Q-R/K-R-F117, with the motif characteristics of the virulent NDV strain, which was in accordant with the results of assessment of the pathogenicity. The phylogentic tree based on sequences of fusion protein gene variable regions (47-420nt) revealed that the 18 strains belonged to sub-genotype VIId and the others belonged to an old genotype III of NDV, revealing that subgenotype VIId virus was responsible for the NDV outbreaks in some regions of Jiangsu and Guangxi promince recently.


Subject(s)
Disease Outbreaks , Newcastle disease virus/genetics , Viral Fusion Proteins/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Base Sequence , Chickens/virology , China/epidemiology , Geese/virology , Molecular Epidemiology , Newcastle Disease/epidemiology , Newcastle Disease/genetics , Newcastle disease virus/pathogenicity , Phylogeny , Poultry Diseases/epidemiology , Poultry Diseases/genetics , Poultry Diseases/virology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL