Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 379
Filter
Add more filters

Publication year range
1.
Cell ; 159(2): 281-94, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25303525

ABSTRACT

Activity-dependent CREB phosphorylation and gene expression are critical for long-term neuronal plasticity. Local signaling at CaV1 channels triggers these events, but how information is relayed onward to the nucleus remains unclear. Here, we report a mechanism that mediates long-distance communication within cells: a shuttle that transports Ca(2+)/calmodulin from the surface membrane to the nucleus. We show that the shuttle protein is γCaMKII, its phosphorylation at Thr287 by ßCaMKII protects the Ca(2+)/CaM signal, and CaN triggers its nuclear translocation. Both ßCaMKII and CaN act in close proximity to CaV1 channels, supporting their dominance, whereas γCaMKII operates as a carrier, not as a kinase. Upon arrival within the nucleus, Ca(2+)/CaM activates CaMKK and its substrate CaMKIV, the CREB kinase. This mechanism resolves long-standing puzzles about CaM/CaMK-dependent signaling to the nucleus. The significance of the mechanism is emphasized by dysregulation of CaV1, γCaMKII, ßCaMKII, and CaN in multiple neuropsychiatric disorders.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Animals , Calcium/metabolism , Calcium Channels/metabolism , Calmodulin/metabolism , Cell Nucleus/metabolism , Neurons/metabolism , Phosphorylation , Rats, Sprague-Dawley , Transcription, Genetic
2.
Nature ; 622(7984): 802-809, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37853123

ABSTRACT

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist1, has revolutionized the treatment of depression because of its potent, rapid and sustained antidepressant effects2-4. Although the elimination half-life of ketamine is only 13 min in mice5, its antidepressant activities can last for at least 24 h6-9. This large discrepancy poses an interesting basic biological question and has strong clinical implications. Here we demonstrate that after a single systemic injection, ketamine continues to suppress burst firing and block NMDARs in the lateral habenula (LHb) for up to 24 h. This long inhibition of NMDARs is not due to endocytosis but depends on the use-dependent trapping of ketamine in NMDARs. The rate of untrapping is regulated by neural activity. Harnessing the dynamic equilibrium of ketamine-NMDAR interactions by activating the LHb and opening local NMDARs at different plasma ketamine concentrations, we were able to either shorten or prolong the antidepressant effects of ketamine in vivo. These results provide new insights into the causal mechanisms of the sustained antidepressant effects of ketamine. The ability to modulate the duration of ketamine action based on the biophysical properties of ketamine-NMDAR interactions opens up new opportunities for the therapeutic use of ketamine.


Subject(s)
Antidepressive Agents , Depression , Habenula , Ketamine , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Antidepressive Agents/administration & dosage , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/pharmacology , Depression/drug therapy , Depression/metabolism , Habenula/drug effects , Habenula/metabolism , Half-Life , Ketamine/administration & dosage , Ketamine/metabolism , Ketamine/pharmacokinetics , Ketamine/pharmacology , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Time Factors , Protein Binding
3.
Nat Rev Neurosci ; 24(11): 672-692, 2023 11.
Article in English | MEDLINE | ID: mdl-37773070

ABSTRACT

Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.


Subject(s)
Neuronal Plasticity , Receptors, N-Methyl-D-Aspartate , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Neuronal Plasticity/physiology , Long-Term Potentiation/physiology , Neurons/metabolism , Synapses/metabolism , Gene Expression , Hippocampus/physiology
4.
Cell ; 149(5): 1112-24, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22632974

ABSTRACT

Activity-dependent gene expression triggered by Ca(2+) entry into neurons is critical for learning and memory, but whether specific sources of Ca(2+) act distinctly or merely supply Ca(2+) to a common pool remains uncertain. Here, we report that both signaling modes coexist and pertain to Ca(V)1 and Ca(V)2 channels, respectively, coupling membrane depolarization to CREB phosphorylation and gene expression. Ca(V)1 channels are advantaged in their voltage-dependent gating and use nanodomain Ca(2+) to drive local CaMKII aggregation and trigger communication with the nucleus. In contrast, Ca(V)2 channels must elevate [Ca(2+)](i) microns away and promote CaMKII aggregation at Ca(V)1 channels. Consequently, Ca(V)2 channels are ~10-fold less effective in signaling to the nucleus than are Ca(V)1 channels for the same bulk [Ca(2+)](i) increase. Furthermore, Ca(V)2-mediated Ca(2+) rises are preferentially curbed by uptake into the endoplasmic reticulum and mitochondria. This source-biased buffering limits the spatial spread of Ca(2+), further attenuating Ca(V)2-mediated gene expression.


Subject(s)
CREB-Binding Protein/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, N-Type/metabolism , Calcium Signaling , Hippocampus/metabolism , Animals , Calcium/metabolism , Cell Nucleus/metabolism , Gene Expression , Hippocampus/cytology , Mitochondria/metabolism , Rats , Rats, Sprague-Dawley
5.
J Neurosci ; 43(15): 2631-2652, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36868861

ABSTRACT

Activity-dependent changes in protein expression are critical for neuronal plasticity, a fundamental process for the processing and storage of information in the brain. Among the various forms of plasticity, homeostatic synaptic up-scaling is unique in that it is induced primarily by neuronal inactivity. However, precisely how the turnover of synaptic proteins occurs in this homeostatic process remains unclear. Here, we report that chronically inhibiting neuronal activity in primary cortical neurons prepared from embryonic day (E)18 Sprague Dawley rats (both sexes) induces autophagy, thereby regulating key synaptic proteins for up-scaling. Mechanistically, chronic neuronal inactivity causes dephosphorylation of ERK and mTOR, which induces transcription factor EB (TFEB)-mediated cytonuclear signaling and drives transcription-dependent autophagy to regulate αCaMKII and PSD95 during synaptic up-scaling. Together, these findings suggest that mTOR-dependent autophagy, which is often triggered by metabolic stressors such as starvation, is recruited and sustained during neuronal inactivity to maintain synaptic homeostasis, a process that ensures proper brain function and if impaired can cause neuropsychiatric disorders such as autism.SIGNIFICANCE STATEMENT In the mammalian brain, protein turnover is tightly controlled by neuronal activation to ensure key neuronal functions during long-lasting synaptic plasticity. However, a long-standing question is how this process occurs during synaptic up-scaling, a process that requires protein turnover but is induced by neuronal inactivation. Here, we report that mTOR-dependent signaling, which is often triggered by metabolic stressors such as starvation, is "hijacked" by chronic neuronal inactivation, which then serves as a nucleation point for transcription factor EB (TFEB) cytonuclear signaling that drives transcription-dependent autophagy for up-scaling. These results provide the first evidence of a physiological role of mTOR-dependent autophagy in enduing neuronal plasticity, thereby connecting major themes in cell biology and neuroscience via a servo loop that mediates autoregulation in the brain.


Subject(s)
Neuronal Plasticity , Neurons , Rats , Animals , Male , Female , Rats, Sprague-Dawley , Neurons/physiology , Homeostasis/physiology , Neuronal Plasticity/physiology , TOR Serine-Threonine Kinases/metabolism , Autophagy , Transcription Factors/metabolism , Mammals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
6.
J Biol Chem ; 299(4): 104597, 2023 04.
Article in English | MEDLINE | ID: mdl-36898580

ABSTRACT

Neurospora crassa is an important model organism for circadian clock research. The Neurospora core circadian component FRQ protein has two isoforms, large FRQ (l-FRQ) and small FRQ (s-FRQ), of which l-FRQ bears an additional N-terminal 99-amino acid fragment. However, how the FRQ isoforms operate differentially in regulating the circadian clock remains elusive. Here, we show l-FRQ and s-FRQ play different roles in regulating the circadian negative feedback loop. Compared to s-FRQ, l-FRQ is less stable and undergoes hypophosphorylation and faster degradation. The phosphorylation of the C-terminal l-FRQ 794-aa fragment was markedly higher than that of s-FRQ, suggesting the l-FRQ N-terminal 99-aa region may regulate the phosphorylation of the entire FRQ protein. Quantitative label-free LC/MS analysis identified several peptides that were differentially phosphorylated between l-FRQ and s-FRQ, which were distributed in FRQ in an interlaced fashion. Furthermore, we identified two novel phosphorylation sites, S765 and T781; mutations S765A and T781A showed no significant effects on conidiation rhythmicity, although T781 conferred FRQ stability. These findings demonstrate that FRQ isoforms play differential roles in the circadian negative feedback loop and undergo different regulations of phosphorylation, structure, and stability. The l-FRQ N-terminal 99-aa region plays an important role in regulating the phosphorylation, stability, conformation, and function of the FRQ protein. As the FRQ circadian clock counterparts in other species also have isoforms or paralogues, these findings will also further our understanding of the underlying regulatory mechanisms of the circadian clock in other organisms based on the high conservation of circadian clocks in eukaryotes.


Subject(s)
Circadian Clocks , Fungal Proteins , Circadian Rhythm/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Neurospora crassa/genetics , Neurospora crassa/metabolism , Phosphorylation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Protein Stability
7.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37541261

ABSTRACT

Centromeres (CEN) are the chromosomal regions that play a crucial role in maintaining genomic stability. The underlying highly repetitive DNA sequences can evolve quickly in most eukaryotes, and promote karyotype evolution. Despite their variability, it is not fully understood how these widely variable sequences ensure the homeostasis of centromere function. In this study, we investigated the genetics and epigenetics of CEN in a population of wheat lines from global breeding programs. We captured a high degree of sequences, positioning, and epigenetic variations in the large and complex wheat CEN. We found that most CENH3-associated repeats are Cereba element of retrotransposons and exhibit phylogenetic homogenization across different wheat lines, but the less-associated repeat sequences diverge on their own way in each wheat line, implying specific mechanisms for selecting certain repeat types as functional core CEN. Furthermore, we observed that CENH3 nucleosome structures display looser wrapping of DNA termini on complex centromeric repeats, including the repositioned CEN. We also found that strict CENH3 nucleosome positioning and intrinsic DNA features play a role in determining centromere identity among different lines. Specific non-B form DNAs were substantially associated with CENH3 nucleosomes for the repositioned centromeres. These findings suggest that multiple mechanisms were involved in the adaptation of CENH3 nucleosomes that can stabilize CEN. Ultimately, we proposed a remarkable epigenetic plasticity of centromere chromatin within the diverse genomic context, and the high robustness is crucial for maintaining centromere function and genome stability in wheat 10+ lines as a result of past breeding selections.


Subject(s)
Histones , Nucleosomes , Histones/genetics , Triticum/genetics , Phylogeny , Plant Breeding , Centromere/genetics
8.
Small ; 20(26): e2310149, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38233200

ABSTRACT

Bioinspired nanotopography is a promising approach to generate antimicrobial surfaces to combat implant-associated infection. Despite efforts to develop bactericidal 1D structures, the antibacterial capacity of 2D structures and their mechanism of action remains uncertain. Here, hydrothermal synthesis is utilized to generate two 2D nanoflake surfaces on titanium (Ti) substrates and investigate the physiological effects of nanoflakes on bacteria. The nanoflakes impair the attachment and growth of Escherichia coli and trigger the accumulation of intracellular reactive oxygen species (ROS), potentially contributing to the killing of adherent bacteria. E. coli surface appendages type-1 fimbriae and flagella are not implicated in the nanoflake-mediated modulation of bacterial attachment but do influence the bactericidal effects of nanoflakes. An E. coli ΔfimA mutant lacking type-1 fimbriae is more susceptible to the bactericidal effects of nanoflakes than the parent strain, while E. coli cells lacking flagella (ΔfliC) are more resistant. The results suggest that type-1 fimbriae confer a cushioning effect that protects bacteria upon initial contact with the nanoflake surface, while flagella-mediated motility can lead to elevated membrane abrasion. This finding offers a better understanding of the antibacterial properties of nanoflake structures that can be applied to the design of antimicrobial surfaces for future medical applications.


Subject(s)
Escherichia coli , Surface Properties , Titanium , Titanium/chemistry , Titanium/pharmacology , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Reactive Oxygen Species/metabolism , Nanostructures/chemistry , Bacterial Adhesion/drug effects , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Fimbriae, Bacterial/drug effects , Fimbriae, Bacterial/metabolism
9.
Mol Carcinog ; 63(4): 757-771, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38289172

ABSTRACT

Long noncoding RNAs (LncRNAs) have been gaining attention as potential therapeutic targets for lung cancer. In this study, we investigated the expression and biological behavior of lncRNA DARS-AS1, its predicted interacting partner miR-302a-3p, and ACAT1 in nonsmall cell lung cancer (NSCLC). The transcript level of DARS-AS1, miR-302a-3p, and ACAT1 was analyzed using qRT-PCR. Endogenous expression of ACAT1 and the expression of-and changes in-AKT/ERK pathway-related proteins were determined using western blotting. MTS, Transwell, and apoptosis experiments were used to investigate the behavior of cells. The subcellular localization of DARS-AS1 was verified using FISH, and its binding site was verified using dual-luciferase reporter experiments. The binding of DARS-AS1 to miR-302a-3p was verified using RNA co-immunoprecipitation. In vivo experiments were performed using a xenograft model to determine the effect of DARS-AS1 knockout on ACAT1 and NSCLC. lncRNA DARS-AS1 was upregulated in NSCLC cell lines and tissues and the expression of lncRNA DARS-AS1 was negatively correlated with survival of patients with NSCLC. Knockdown of DARS-AS1 inhibited the malignant behaviors of NSCLC via upregulating miR-302a-3p. miR-302a-3p induced suppression of malignancy through regulating oncogene ACAT1. This study demonstrates that the DARS-AS1-miR-302a-3p-ACAT1 pathway plays a key role in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Acetyl-CoA C-Acetyltransferase/genetics , Acetyl-CoA C-Acetyltransferase/metabolism
10.
FASEB J ; 37(11): e23195, 2023 11.
Article in English | MEDLINE | ID: mdl-37801076

ABSTRACT

RUNX1, a member of the RUNX family of metazoan transcription factors, participates in the regulation of differentiation, proliferation, and other processes involved in growth and development. It also functions in the occurrence and development of tumors. However, the role and mechanism of action of RUNX1 in non-small cell lung cancer (NSCLC) are not yet clear. We used a bioinformatics approach as well as in vitro and in vivo assays to evaluate the role of RUNX1 in NSCLC as the molecular mechanisms underlying its effects. Using the TCGA, GEO, GEPIA (Gene Expression Profiling Interactive Analysis), and Kaplan-Meier databases, we screened the differentially expressed genes (DEGs) and found that RUNX1 was highly expressed in lung cancer and was associated with a poor prognosis. Immunohistochemical staining based on tissue chips from 110 samples showed that the expression of RUNX1 in lung cancer tissues was higher than that in adjacent normal tissues and was positively correlated with lymph node metastasis and TNM staging. In vitro experiments, we found that RUNX1 overexpression promoted cell proliferation and migration functions and affected downstream functional proteins by regulating the activity of the mTOR pathway, as confirmed by an analysis using the mTOR pathway inhibitor rapamycin. In addition, RUNX1 affected PD-L1 expression via the mTOR pathway. These results indicate that RUNX1 is a potential therapeutic target for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Movement , Gene Expression Regulation, Neoplastic
11.
Horm Behav ; 162: 105536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522143

ABSTRACT

Paternal deprivation (PD) impairs social cognition and sociality and increases levels of anxiety-like behavior. However, whether PD affects the levels of empathy in offspring and its underlying mechanisms remain unknown. The present study found that PD increased anxiety-like behavior in mandarin voles (Microtus mandarinus), impaired sociality, reduced the ability of emotional contagion, and the level of consolation behavior. Meanwhile, PD reduced OT neurons in the paraventricular nucleus (PVN) in both male and female mandarin voles. PD decreased the level of OT receptor (OTR) mRNA in the anterior cingulate cortex (ACC) of male and female mandarin voles. Besides, OTR overexpression in the ACC reversed the PD-induced changes in anxiety-like behavior, social preference, emotional contagion, and consolation behavior. Interference of OTR expression in the ACC increased levels of anxiety-like behaviors, while it reduced levels of sociality, emotional contagion, and consolation. These results revealed that the OTR in the ACC is involved in the effects of PD on empathetic behaviors, and provide mechanistic insight into how social experiences affect empathetic behaviors.


Subject(s)
Arvicolinae , Behavior, Animal , Gyrus Cinguli , Paternal Deprivation , Animals , Female , Male , Anxiety/metabolism , Arvicolinae/physiology , Gyrus Cinguli/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Receptors, Oxytocin/metabolism , Receptors, Oxytocin/genetics , Social Behavior
12.
Phys Chem Chem Phys ; 26(22): 15831-15843, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38787657

ABSTRACT

High performance computing (HPC) is renowned for its capacity to tackle complex problems. Meanwhile, quantum computing (QC) provides a potential way to accurately and efficiently solve quantum chemistry problems. The emerging field of quantum-centric high performance computing (QCHPC), which merges these two powerful technologies, is anticipated to enhance computational capabilities for solving challenging problems in quantum chemistry. The implementation of QCHPC for quantum chemistry requires interdisciplinary research and collaboration across multiple fields, including quantum chemistry, quantum physics, computer science and so on. This perspective provides an introduction to the quantum algorithms that are suitable for deployment in QCHPC, focusing on conceptual insights rather than technical details. Parallel strategies to implement these algorithms on quantum-centric supercomputers are discussed. We also summarize high performance quantum emulating simulators, which are considered a viable tool to explore QCHPC. We conclude with challenges and outlooks in this field.

14.
Eur Child Adolesc Psychiatry ; 33(4): 1017-1028, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37166521

ABSTRACT

The present study measured serum levels of vitamin A (VA) and vitamin D (VD) in children with chronic tic disorders (CTD) and investigated their potential association with CTD and comorbidity of attention deficit hyperactivity disorder (ADHD) and the association of their co-insufficiencies or deficiencies with CTD symptoms. A total of 176 children (131 boys and 45 girls, median age of 9 years) with CTD were recruited as the CTD group. During the same period, 154 healthy children were selected as the healthy control (HC) cohort. Circulating retinol and 25-hydroxyvitamin D (25[OH]D) levels were measured for all participants using high-performance liquid chromatography (HPLC) and tandem mass spectrometry. The Yale Global Tic Severity Scale (YGTSS) was employed for the assessment of tic status and CTD impairment. The Swanson, Nolan, and Pelham Rating Scale (SNAP-IV) and the Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) were used to evaluate comorbidity symptoms. CTD pediatric participants exhibited markedly diminished circulating retinol and 25(OH)D levels compared to HCs. Moreover, VA and VD deficiencies and their co-insufficiencies/deficiencies were more prevalent in CTD participants than HCs. Circulating 25(OH)D levels were inversely proportional to the YGTSS motor tic scores. YGTSS scores in CTD children with only VA or VD insufficiency or deficiency or with VA and VD co-insufficiency/deficiency did not differ from those in CTD children with normal VA and VD. CTD children with comorbid ADHD displayed reduced circulating retinol and 25(OH)D concentrations and elevated prevalence of VD deficiency compared to CTD participants without comorbid ADHD. Lower serum retinol content was intricately linked to the presence of elevated CTD and comorbid ADHD. VA and VD deficiencies and their co-insufficiencies/deficiencies were markedly enhanced in CTD pediatric participants compared to HCs. Lower VA concentration was linked to the presence of enhanced CTD and comorbid ADHD. Therefore, children with CTD, especially with comorbid ADHD, may be at a higher risk of VA or VD deficiency, which may prompt the clinicians to consider whether blood tests for VA and VD in CTD children would be helpful for clinical care.

15.
Eur Respir J ; 62(2)2023 08.
Article in English | MEDLINE | ID: mdl-37385655

ABSTRACT

BACKGROUND: Virus infections drive COPD exacerbations and progression. Antiviral immunity centres on the activation of virus-specific CD8+ T-cells by viral epitopes presented on major histocompatibility complex (MHC) class I molecules of infected cells. These epitopes are generated by the immunoproteasome, a specialised intracellular protein degradation machine, which is induced by antiviral cytokines in infected cells. METHODS: We analysed the effects of cigarette smoke on cytokine- and virus-mediated induction of the immunoproteasome in vitro, ex vivo and in vivo using RNA and Western blot analyses. CD8+ T-cell activation was determined in co-culture assays with cigarette smoke-exposed influenza A virus (IAV)-infected cells. Mass-spectrometry-based analysis of MHC class I-bound peptides uncovered the effects of cigarette smoke on inflammatory antigen presentation in lung cells. IAV-specific CD8+ T-cell numbers were determined in patients' peripheral blood using tetramer technology. RESULTS: Cigarette smoke impaired the induction of the immunoproteasome by cytokine signalling and viral infection in lung cells in vitro, ex vivo and in vivo. In addition, cigarette smoke altered the peptide repertoire of antigens presented on MHC class I molecules under inflammatory conditions. Importantly, MHC class I-mediated activation of IAV-specific CD8+ T-cells was dampened by cigarette smoke. COPD patients exhibited reduced numbers of circulating IAV-specific CD8+ T-cells compared to healthy controls and asthmatics. CONCLUSION: Our data indicate that cigarette smoke interferes with MHC class I antigen generation and presentation and thereby contributes to impaired activation of CD8+ T-cells upon virus infection. This adds important mechanistic insight on how cigarette smoke mediates increased susceptibility of smokers and COPD patients to viral infections.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Humans , CD8-Positive T-Lymphocytes , Antiviral Agents , Cigarette Smoking/adverse effects , Histocompatibility Antigens Class I/metabolism , Cytokines , Epitopes , Immunity
16.
J Transl Med ; 21(1): 90, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36747249

ABSTRACT

BACKGROUND: Observational studies have found that both short and long sleep duration are associated with increased risk of metabolic syndrome (MetS). This study aimed to examine the associations of genetically determined sleep durations with MetS and its five components (i.e., central obesity, high blood pressure, dyslipidemia, hypertriglyceridemia, and hyperglycemia) among a group of elderly population. METHODS: In 335,727 participants of White British from the UK Biobank, linear Mendelian randomization (MR) methods were first employed to examine the causal association of genetically predicted continuous sleep duration with MetS and its each component. Nonlinear MR analyses were performed to determine the nonlinearity of these associations. The causal associations of short and long sleep duration with MetS and its components were further assessed by using genetic variants that associated with short (≤ 6 h) and long sleep (≥ 9 h) durations. RESULTS: Linear MR analyses demonstrated that genetically predicted 1-h longer sleep duration was associated with a 13% lower risk of MetS, a 30% lower risk of central obesity, and a 26% lower risk of hyperglycemia. Non-linear MR analyses provided evidence for non-linear associations of genetically predicted sleep duration with MetS and its five components (all P values < 0.008). Genetically predicted short sleep duration was moderately associated with MetS and its four components, including central obesity, dyslipidemia, hypertriglyceridemia, and hyperglycemia (all P values < 0.002), whereas genetically long sleep duration was not associated with MetS and any of its components. CONCLUSIONS: Genetically predicted short sleep duration, but not genetically predicted long sleep duration, is a potentially causal risk factor for MetS.


Subject(s)
Dyslipidemias , Hyperglycemia , Hypertriglyceridemia , Metabolic Syndrome , Humans , Aged , Obesity, Abdominal/complications , Mendelian Randomization Analysis , Risk Factors , Obesity/complications , Sleep/genetics , Hyperglycemia/complications , Hyperglycemia/genetics , Dyslipidemias/complications , Hypertriglyceridemia/complications , Genome-Wide Association Study
17.
Fish Shellfish Immunol ; 132: 108442, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36410648

ABSTRACT

Dietary carbohydrate levels can affect gut health, but the roles played by gut microbiota and gut epithelial cells, and their interactions remain unclear. In this experiment, we investigated gut health, gut microbiota, and the gene expression profiles of gut epithelial cells in grass carp consuming diets with different carbohydrate levels. Compared to the moderate-carbohydrate diet, low-carbohydrate diet significantly increased the relative abundance of pathogenic bacteria (Ralstonia and Elizabethkingia) and decreased the abundance of metabolism in cofactors and vitamins, implying a dysregulated gut microbiota and compromised metabolic function. Moreover, low-carbohydrate diet inhibited the expression levels of key genes in autophagy-related pathways in gut epithelial cells, which might directly lead to reduced clearance of defective organelles and pathogenic microorganisms. These aforementioned factors may be responsible for the imperfect organization of the intestinal tract. High-carbohydrate diet also significantly increased the abundance of pathogenic bacteria (Flavobacterium), which directly contributed to a decrease in the abundance of immune system of the microbiota. Furthermore, the active pathways of staphylococcus aureus infection and complement and coagulation cascades, as well as the inhibition of the glutathione metabolism pathway were observed. Above results implied that high-carbohydrate diet might ultimately cause severe gut damage by affecting immune function of microbiota, mentioned immune-related pathways, and the antioxidant capacity. Finally, the correlation network diagram revealed strong correlations of the differentially immune-related gene major histocompatibility complex class I antigen (MR1) with Enhydrobacter and Ruminococcus_gnavus_group in low-carbohydrate diet group, and Arenimonas in high-carbohydrate diet group, respectively, suggesting that MR1 might be a central target for immune responses in gut epithelial cells induced by gut microbiota at different levels of dietary carbohydrate. All these results provided insight in the development of antagonistic probiotics and target genes to improve the utilization of carbohydrate.


Subject(s)
Carps , Gastrointestinal Microbiome , Animals , Dietary Carbohydrates , Carps/metabolism , Diet/veterinary , Flavobacterium/physiology , Gene Expression Regulation , Animal Feed/analysis , Dietary Supplements/analysis , Fish Proteins/genetics
18.
Bioorg Med Chem ; 96: 117517, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37939492

ABSTRACT

Recently, endoradiotherapy based on actinium-225 (225Ac) has attracted increasing attention, which is due to its α particles can generate maximal damage to cancer cells while minimizing unnecessary radiation effects on healthy tissues. Herein, 111In/225Ac-radiolabeled conjugated polymer nanoparticles (CPNs) coated with amphiphilic polymer DSPE-PEG-DOTA have been developed as a new injectable nano-radiopharmaceuticals for cancer endoradiotherapy under the guidance of nuclear imaging. Single photon emission computed tomography/computed tomography (SPECT/CT) using 111In-DOTA-PEG-CPNs as nano probe indicates a prolonged retention of radiolabeled nanocarriers, which was consistent with the in vivo biodistribution examined by direct radiometry analysis. Significant inhibition of tumor growth has been observed in murine 4T1 models treated with 225Ac-DOTA-PEG-CPNs when compared to mice treated with PBS or DOTA-PEG-CPNs. The 225Ac-DOTA-PEG-CPNs group experienced no single death within 24 days with the median survival considerably extended to 35 days, while all the mice treated with PBS or DOTA-PEG-CPNs died at 20 days post injection. Additionally, the histopathology studies demonstrated no obvious side effects on healthy tissues after treatment with 225Ac-DOTA-PEG-CPNs. All these results reveal that the new 225Ac-labeled DOTA-PEG-CPNs is promising as paradigm for endoradiotherapy.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Polymers , Tissue Distribution , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/therapeutic use , Cell Line, Tumor
19.
BMC Psychiatry ; 23(1): 466, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365541

ABSTRACT

BACKGROUND: Due to individual differences and lack of objective biomarkers, only 30-40% patients with major depressive disorder (MDD) achieve remission after initial antidepressant medication (ADM). We aimed to employ radiomics analysis after ComBat harmonization to predict early improvement to ADM in adolescents with MDD by using brain multiscale structural MRI (sMRI) and identify the radiomics features with high prediction power for selection of selective serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs). METHODS: 121 MDD patients were recruited for brain sMRI, including three-dimensional T1 weighted imaging (3D-T1WI)and diffusion tensor imaging (DTI). After receiving SSRIs or SNRIs for 2 weeks, the subjects were divided into ADM improvers (SSRIs improvers and SNRIs improvers) and non-improvers according to reduction rate of the Hamilton Depression Rating Scale, 17 item (HAM-D17) score. Then, sMRI data were preprocessed, and conventional imaging indicators and radiomics features of gray matter (GM) based on surface-based morphology (SBM) and voxel-based morphology (VBM) and diffusion properties of white matter (WM) were extracted and harmonized with ComBat harmonization. Two-level reduction strategy with analysis of variance (ANOVA) and recursive feature elimination (RFE) was utilized sequentially to decrease high-dimensional features. Support vector machine with radial basis function kernel (RBF-SVM) was used to integrate multiscale sMRI features to construct models for early improvement prediction. Area under the curve (AUC), accuracy, sensitivity, and specificity based on the leave-one-out cross-validation (LOO-CV) and receiver operating characteristic (ROC) curve analysis were calculated to evaluate the model performance. Permutation tests were used for assessing the generalization rate. RESULTS: After 2-week ADM, 121 patients were divided into 67 ADM improvers (31 SSRIs improvers and 36 SNRIs improvers) and 54 ADM non-improvers. After two-level dimensionality reduction, 8 conventional indicators (2 VBM-based features and 6 diffusion features) and 49 radiomics features (16 VBM-based features and 33 diffusion features) were selected. The overall accuracy of RBF-SVM models based on conventional indicators and radiomics features was 74.80% and 88.19%. The radiomics model achieved the AUC, sensitivity, specificity, and accuracy of 0.889, 91.2%, 80.1% and 85.1%, 0.954, 89.2%, 87.4% and 88.5%, 0.942, 91.9%, 82.5% and 86.8% for predicting ADM improvers, SSRIs improvers and SNRIs improvers, respectively. P value of permutation tests were less than 0.001. The radiomics features predicting ADM improver were mainly located in the hippocampus, medial orbitofrontal gyrus, anterior cingulate gyrus, cerebellum (lobule vii-b), body of corpus callosum, etc. The radiomics features predicting SSRIs improver were primarily distributed in hippocampus, amygdala, inferior temporal gyrus, thalamus, cerebellum (lobule vi), fornix, cerebellar peduncle, etc. The radiomics features predicting SNRIs improver were primarily located in the medial orbitofrontal cortex, anterior cingulate gyrus, ventral striatum, corpus callosum, etc. CONCLUSIONS: These findings suggest the radiomics analysis based on brain multiscale sMRI after ComBat harmonization could effectively predict the early improvement of ADM in adolescent MDD patients with a high accuracy, which was superior to the model based on the conventional indicators. The radiomics features with high prediction power may help for the individual selection of SSRIs and SNRIs.


Subject(s)
Depressive Disorder, Major , Serotonin and Noradrenaline Reuptake Inhibitors , Humans , Adolescent , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Selective Serotonin Reuptake Inhibitors/therapeutic use , Diffusion Tensor Imaging , Serotonin and Noradrenaline Reuptake Inhibitors/therapeutic use , Antidepressive Agents/therapeutic use , Magnetic Resonance Imaging/methods
20.
Nucleic Acids Res ; 49(5): 2959-2972, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33619523

ABSTRACT

The interferon gamma-inducible protein 16 (IFI16) and its murine homologous protein p204 function in non-sequence specific dsDNA sensing; however, the exact dsDNA recognition mechanisms of IFI16/p204, which harbour two HIN domains, remain unclear. In the present study, we determined crystal structures of p204 HINa and HINb domains, which are highly similar to those of other PYHIN family proteins. Moreover, we obtained the crystal structure of p204 HINab domain in complex with dsDNA and provided insights into the dsDNA binding mode. p204 HINab binds dsDNA mainly through α2 helix of HINa and HINb, and the linker between them, revealing a similar HIN:DNA binding mode. Both HINa and HINb are vital for HINab recognition of dsDNA, as confirmed by fluorescence polarization assays. Furthermore, a HINa dimerization interface was observed in structures of p204 HINa and HINab:dsDNA complex, which is involved in binding dsDNA. The linker between HINa and HINb reveals dynamic flexibility in solution and changes its direction at ∼90° angle in comparison with crystal structure of HINab:dsDNA complex. These structural information provide insights into the mechanism of DNA recognition by different HIN domains, and shed light on the unique roles of two HIN domains in activating the IFI16/p204 signaling pathway.


Subject(s)
DNA/chemistry , Nuclear Proteins/chemistry , Phosphoproteins/chemistry , Crystallography, X-Ray , DNA/metabolism , Models, Molecular , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Protein Binding , Protein Domains , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL