ABSTRACT
Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 macaque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-type composition and neighborhood complexity. Notably, we discovered a relationship between the regional distribution of various cell types and the region's hierarchical level in the visual and somatosensory systems. Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further revealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a region-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution, development, aging, and pathogenesis of the primate brain.
Subject(s)
Cerebral Cortex , Macaca , Single-Cell Analysis , Transcriptome , Animals , Humans , Mice , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Macaca/metabolism , Transcriptome/geneticsABSTRACT
Pericytes and endothelial cells (ECs) constitute the fundamental components of blood vessels. While the role of ECs in tumor angiogenesis and the tumor microenvironment is well appreciated, pericyte function in tumors remains underexplored. In this study, we used pericyte-specific deletion of the nitric oxide (NO) receptor, soluble guanylate cyclase (sGC), to investigate via single-cell RNA sequencing how pericytes influence the vascular niche and the tumor microenvironment. Our findings demonstrate that pericyte sGC deletion disrupts EC-pericyte interactions, impairing Notch-mediated intercellular communication and triggering extensive transcriptomic reprogramming in both pericytes and ECs. These changes further extended their influence to neighboring cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) through paracrine signaling, collectively suppressing tumor growth. Inhibition of pericyte sGC has minimal impact on quiescent vessels but significantly increases the vulnerability of angiogenic tumor vessels to conventional anti-angiogenic therapy. In conclusion, our findings elucidate the role of pericytes in shaping the tumor vascular niche and tumor microenvironment and support pericyte sGC targeting as a promising strategy for improving anti-angiogenic therapy for cancer treatment.
Subject(s)
Neoplasms , Pericytes , Humans , Pericytes/pathology , Pericytes/physiology , Soluble Guanylyl Cyclase , Endothelial Cells/physiology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neoplasms/genetics , Neoplasms/pathology , Guanylate Cyclase , Tumor MicroenvironmentABSTRACT
Aristolochic acid I (AAI) is a natural bioactive substance found in plants from the Aristolochiaceae family and impairs spermatogenesis. However, whether AAI-induced spermatogenesis impairment starts at the early stages of spermatogenesis has not yet been determined. Spermatogonial stem cells (SSCs) are undifferentiated spermatogonia that balance self-renewing and differentiating divisions to maintain spermatogenesis throughout adult life and are the only adult stem cells capable of passing genes onto the next generation. The objective of this study was to investigate whether AAI impairs SSCs during the early stages of spermatogenesis. After AAI treatment, we observed looser, smaller and fewer colonies, decreased cell viability, a decreased relative cell proliferation index, and increased apoptosis in SSCs in a concentration- and/or time-dependent manner. Additionally, AAI promoted apoptosis in SSCs, which was accompanied by upregulation of caspase 3, P53 and BAX expression and downregulation of Bcl-2 expression, and suppressed autophagy, which was accompanied by upregulation of P62 expression and downregulation of ATG5 and LC3B expression, in a concentration-dependent manner. Then we found that AAI impaired spermatogenesis in rats, as identified by degeneration of the seminiferous epithelium, and increased apoptosis of testicular cells. Taken together, our findings demonstrate that AAI causes damage to SSCs and implicate apoptosis and autophagy in this process. The impairment of SSCs may contribute to AAI-induced testicular impairment. Our findings provide crucial information for the human application of botanical products containing trace amounts of AAI.
ABSTRACT
[This corrects the article DOI: 10.1093/toxres/tfab038.].