Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
BMC Pulm Med ; 24(1): 264, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824531

ABSTRACT

BACKGROUND: Smoking induces and modifies the airway immune response, accelerating the decline of asthmatics' lung function and severely affecting asthma symptoms' control level. To assess the prognosis of asthmatics who smoke and to provide reasonable recommendations for treatment, we constructed a nomogram prediction model. METHODS: General and clinical data were collected from April to September 2021 from smoking asthmatics aged ≥14 years attending the People's Hospital of Zhengzhou University. Patients were followed up regularly by telephone or outpatient visits, and their medication and follow-up visits were recorded during the 6-months follow-up visit, as well as their asthma control levels after 6 months (asthma control questionnaire-5, ACQ-5). The study employed R4.2.2 software to conduct univariate and multivariate logistic regression analyses to identify independent risk factors for 'poorly controlled asthma' (ACQ>0.75) as the outcome variable. Subsequently, a nomogram prediction model was constructed. Internal validation was used to test the reproducibility of the model. The model efficacy was evaluated using the consistency index (C-index), receiver operating characteristic (ROC) curve, calibration curve, and decision curve. RESULTS: Invitations were sent to 231 asthmatics who smoked. A total of 202 participants responded, resulting in a final total of 190 participants included in the model development. The nomogram established five independent risk factors (P<0.05): FEV1%pred, smoking index (100), comorbidities situations, medication regimen, and good or poor medication adherence. The area under curve (AUC) of the modeling set was 0.824(95%CI 0.765-0.884), suggesting that the nomogram has a high ability to distinguish poor asthma control in smoking asthmatics after 6 months. The calibration curve showed a C-index of 0.824 for the modeling set and a C-index of 0.792 for the self-validation set formed by 1000 bootstrap sampling, which means that the prediction probability of the model was consistent with reality. Decision curve analysis (DCA) of the nomogram revealed that the net benefit was higher when the risk threshold probability for poor asthma control was 4.5 - 93.9%. CONCLUSIONS: FEV1%pred, smoking index (100), comorbidities situations, medication regimen, and medication adherence were identified as independent risk factors for poor asthma control after 6 months in smoking asthmatics. The nomogram established based on these findings can effectively predict relevant risk and provide clinicians with a reference to identify the poorly controlled population with smoking asthma as early as possible, and to select a better therapeutic regimen. Meanwhile, it can effectively improve the medication adherence and the degree of attention to complications in smoking asthma patients.


Subject(s)
Asthma , Nomograms , Smoking , Humans , Asthma/drug therapy , Asthma/physiopathology , Male , Female , Risk Factors , Adult , Middle Aged , Smoking/epidemiology , Smoking/adverse effects , ROC Curve , Logistic Models , China/epidemiology , Surveys and Questionnaires , Prognosis , Reproducibility of Results
2.
J Environ Manage ; 359: 120984, 2024 May.
Article in English | MEDLINE | ID: mdl-38678905

ABSTRACT

The chronic lack of effective disposal of pollutants has resulted in the detection of a wide variety of EPs in the environment, with concentrations high enough to affect ecological health. Laccase, as a versatile oxidase capable of catalyzing a wide range of substrates and without producing toxic by-products, is a potential candidate for the biodegradation of pollutants. Immobilization can provide favorable protection for free laccase, improve the stability of laccase in complex environments, and greatly enhance the reusability of laccase, which is significant in reducing the cost of industrial applications. This study introduces the properties of laccase and subsequently elaborate on the different support materials for laccase immobilization. The research advances in the degradation of EDs, PPCPs, and PAHs by immobilized laccase are then reviewed. This review provides a comprehensive understanding of laccase immobilization, as well as the advantages of various support materials, facilitating the development of more economical and efficient immobilization systems that can be put into practice to achieve the green degradation of EPs.


Subject(s)
Biodegradation, Environmental , Enzymes, Immobilized , Laccase , Laccase/metabolism , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Environmental Pollutants/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/metabolism
3.
ACS Sens ; 9(3): 1508-1514, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38387077

ABSTRACT

In situ and real-time determination of hydroxyl radicals (•OH) in physiological and pathological processes is a great challenge due to their ultrashort lifetime. Herein, an electrochemical method was developed by using dimethyl sulfoxide (DMSO) as a trapping probe for rapid determination of •OH in aqueous solution. When DMSO reacted with •OH, an intermediate product methane sulfinic acid (MSIA) was formed, which can be electrochemically oxidized to methanesulfonic acid (MSA) on the glassy carbon electrode (GCE), resulting in a distinct voltammetric signal that is directly proportional to the concentration of •OH. Other commonly encountered reactive oxygen species (ROS), including hypochlorite anions (ClO-), superoxide anions (O2•-), sulfate radicals (SO4•-), and singlet oxygen (1O2), have showed no interference for •OH determination. Thus, an electrochemical method was developed for the determination of •OH, which exhibits a wide linear range (0.4-5120 µM) and a low limit detection of 0.13 µM (S/N = 3) and was successfully applied for the quantification of •OH in aqueous extracts of cigarette tar (ACT). Alternatively, the same reaction mechanism is also applicable for the determination of DMSO, in which a linear range of 40-320 µM and a detection limit 13.3 µM (S/N = 3) was achieved. The method was used for the evaluation of DMSO content in cell cryopreservation medium. This work demonstrated that DMSO can serve as an electrochemical probe and has valuable application potential in radical study, biological research, and environmental monitoring.


Subject(s)
Dimethyl Sulfoxide , Hydroxyl Radical , Hydroxyl Radical/chemistry , Dimethyl Sulfoxide/chemistry , Reactive Oxygen Species , Indicators and Reagents , Water
4.
Curr Res Food Sci ; 8: 100718, 2024.
Article in English | MEDLINE | ID: mdl-38545378

ABSTRACT

Currently, dairy mastitis caused by Staphylococcus xylosus poses a serious challenge for dairy farming. In this study, we explored the role and mechanism of rhein against S. xylosus with the hope of providing new research ideas to solve mastitis in dairy cows and ensure the source safety of dairy products. Through in vitro antimicrobial studies, we found that the minimum inhibitory concentration (MIC) of rhein was 64 µg/mL, and it significantly interfered with the formation of S. xylosus biofilm at sub-MIC. In experiments on mastitis in mice, rhein alleviated inflammation in mammary tissue, reduced the levels of TNF-α and IL-6, and decreased the number of S. xylosus. To explore the anti-S. xylosus mechanism of rhein, we identified the relevant proteins involved in carbon metabolism (Glycolysis/gluconeogenesis, TCA cycle, Fatty acid degradation) through proteomics. Additionally, proteins associated with the respiratory chain, oxidative stress (proteins of antioxidant and DNA repair), and nitrate respiration were also found to be upregulated. Thus, rhein may act as an antibacterial agent by interfering with the respiratory metabolism of S. xylosus and inducing the production of ROS, high levels of which alter the permeability of bacterial cell membranes and cause damage to them. We measured the concentrations of extracellular ß-galactosidase and nucleic acids. Additionally, SEM observation of S. xylosus morphology showed elevated membrane permeability and damage to the cell membrane. Finally, RT-PCR experiments showed that mRNAs of key proteins of the TCA cycle (odhA, mqo) and nitrate respiration (nreB, nreC, narG) were significantly up-regulated, consistent with proteomic results. In conclusion, rhein has good anti-S. xylosus effects in vitro and in vivo, by interfering with bacterial energy metabolism, inducing ROS production, and causing cell membrane and DNA damage, which may be one of the important mechanisms of its antimicrobial activity.

5.
J Inflamm Res ; 17: 957-980, 2024.
Article in English | MEDLINE | ID: mdl-38370466

ABSTRACT

Purpose: Osteoarthritis (OA) is the most common joint disease worldwide and is the primary cause of disability and chronic pain in older adults.Ferroptosis is a type of programmed cell death characterized by aberrant iron metabolism and reactive oxygen species accumulation; however, its role in OA is not known. Methods: To identify ferroptosis markers co-expressed in articular cartilage and synovium samples from patients with OA, in silico analysis was performed.Signature genes were analyzed and the results were evaluated using a ROC curve prediction model.The biological function, correlation between Signature genes, immune cell infiltration, and ceRNA network analyses were performed. Signature genes and ferroptosis phenotypes were verified through in vivo animal experiments and clinical samples. The expression levels of non-coding RNAs in samples from patients with OA were determined using qRT-PCR. ceRNA network analysis results were confirmed using dual-luciferase assays. Results: JUN, ATF3, and CDKN1A were identified as OA- and ferroptosis-associated signature genes. GSEA analysis demonstrated an enrichment of these genes in immune and inflammatory responses, and amino acid metabolism. The CIBERSORT algorithm showed a negative correlation between T cells and these signature genes in the cartilage, and a positive correlation in the synovium. Moreover, RP5-894D12.5 and FAM95B1 regulated the expression of JUN, ATF3, and CDKN1A by competitively binding to miR-1972, miR-665, and miR-181a-2-3p. In vivo, GPX4 was downregulated in both OA cartilage and synovium; however, GPX4 and GSH were downregulated, while ferrous ions were upregulated in patient OA cartilage and synovium samples, indicating that ferroptosis was involved in the pathogenesis of OA. Furthermore, JUN, ATF3, and CDKN1A expression was downregulated in both mouse and human OA synovial and cartilage tissues. qRT-PCR demonstrated that miR-1972, RP5-894D12.5, and FAM95B1 were differentially expressed in OA tissues. Targeted interactions between miR-1972 and JUN, and a ceRNA regulatory mechanism between RP5-894D12.5, miR-1972, and JUN were confirmed by dual-luciferase assays. Conclusion: This study identified JUN, ATF3, and CDKN1A as possible diagnostic biomarkers and therapeutic targets for joint synovitis and OA. Furthermore, our finding indicated that RP5-894D12.5/miR-1972/JUN was a potential ceRNA regulatory axis in OA, providing an insight into the connection between ferroptosis and OA.

6.
Plants (Basel) ; 13(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256790

ABSTRACT

Head smut is a soil-borne fungal disease caused by Sporisorium reilianum that infects maize tassels and ears. This disease poses a tremendous threat to global maize production. A previous study found markedly different and stably heritable tassel symptoms in some maize inbred lines with Sipingtou blood after infection with S. reilianum. In the present study, 55 maize inbred lines with Sipingtou blood were inoculated with S. reilianum and classified into three tassel symptom types (A, B, and C). Three maize inbred lines representing these classes (Huangzao4, Jing7, and Chang7-2, respectively) were used as test materials to investigate the physiological mechanisms of tassel formation in infected plants. Changes in enzyme activity, hormone content, and protein expression were analyzed in all three lines after infection and in control plants. The activities of peroxidase (POD), superoxide dismutase (SOD), and phenylalanine-ammonia-lyase (PAL) were increased in the three typical inbred lines after inoculation. POD and SOD activities showed similar trends between lines, with the increase percentage peaking at the V12 stage (POD: 57.06%, 63.19%, and 70.28% increases in Huangzao4, Jing7, and Chang7-2, respectively; SOD: 27.01%, 29.62%, and 47.07% in Huangzao4, Jing7, and Chang7-2, respectively. These were all higher than in the disease-resistant inbred line Mo17 at the same growth stage); this stage was found to be key in tassel symptom formation. Levels of gibberellic acid (GA3), indole-3-acetic acid (IAA), and abscisic acid (ABA) were also altered in the three typical maize inbred lines after inoculation, with changes in GA3 and IAA contents tightly correlated with tassel symptoms after S. reilianum infection. The differentially expressed proteins A5H8G4, P09233, and Q8VXG7 were associated with changes in enzyme activity, whereas P49353, P13689, and P10979 were associated with changes in hormone contents. Fungal infection caused reactive oxygen species (ROS) and nitric oxide (NO) bursts in the three typical inbred lines. This ROS accumulation caused biofilm disruption and altered host signaling pathways, whereas NO signaling triggered strong secondary metabolic responses in the host and altered the activities of defense-related enzymes. These factors together resulted in the formation of varying tassel symptoms. Thus, interactions between S. reilianum and susceptible maize materials were influenced by a variety of signals, enzymes, hormones, and metabolic cycles, encompassing a very complex regulatory network. This study preliminarily identified the physiological mechanisms leading to differences in tassel symptoms, deepening our understanding of S. reilianum-maize interactions.

7.
Front Cell Infect Microbiol ; 13: 1325418, 2023.
Article in English | MEDLINE | ID: mdl-38264724

ABSTRACT

Sanghuangporus, also known as "Sanghuang" in China, is a well-known genus of traditional Chinese medicinal macrofungi. To make more effective use of Sanghuangporus resources, we completed the first genome assembly and annotation of a monokaryon strain of S. weigelae in the present study. A 33.96-Mb genome sequence was assembled as 13 contigs, leading to prediction of 9377 protein-coding genes. Phylogenetic and average nucleotide identity analyses indicated that the S. weigelae genome is closely related to those of other Sanghuangporus species in evolutionary tree, which clustered in one clade. Collinearity analysis revealed a high level of collinearity of S. weigelae with S. baumii, S. vaninii, and S. sanghuang. Biosynthesis pathways potentially involved in medicinal properties, including terpenoid and polysaccharide synthesis, were identified in S. weigelae, while polysaccharides were identified as the main medicinal metabolites in S. weigelae, with flavonoids more important in Sanghuangporus than other medicinal mushroom groups. Genes encoding 332 carbohydrate-active enzymes were identified in the S. weigelae genome, including major glycoside hydrolases and glycosyltransferases predicted, revealing the robust lignocellulose degradation capacity of S. weigelae. Further, 130 genes, clustered in seven classes were annotated to encode cytochromes P450 in the S. weigelae genome. Overall, our results reveal the remarkably medicinal capacity of S. weigelae and provide new insights that will inform the study of evolution and medicinal application of S. weigelae. The data are a reference resource for the formulation of scientific and rational ecological protection policies for Sanghuangporus species.


Subject(s)
Basidiomycota , Phylogeny , China , Metabolic Networks and Pathways
8.
Front Bioeng Biotechnol ; 11: 1325088, 2023.
Article in English | MEDLINE | ID: mdl-38292304

ABSTRACT

Daedaleopsis sinensis is a fungus that grows on wood and secretes a series of enzymes to degrade cellulose, hemicellulose, and lignin and cause wood rot decay. Wood-decaying fungi have ecological, economic, edible, and medicinal functions. Furthermore, the use of microorganisms to biodegrade lignocellulose has high application value. Genome sequencing has allowed microorganisms to be analyzed from the aspects of genome characteristics, genome function annotation, metabolic pathways, and comparative genomics. Subsequently, the relevant information regarding lignocellulosic degradation has been mined by bioinformatics. Here, we sequenced and analyzed the genome of D. sinensis for the first time. A 51.67-Mb genome sequence was assembled to 24 contigs, which led to the prediction of 12,153 protein-coding genes. Kyoto Encyclopedia of Genes and Genomes database analysis of the D. sinensis data revealed that 3,831 genes are involved in almost 120 metabolic pathways. According to the Carbohydrate-Active Enzyme database, 481 enzymes are found in D. sinensis, of which glycoside hydrolases are the most abundant. The genome sequence of D. sinensis provides insights into its lignocellulosic degradation and subsequent applications.

SELECTION OF CITATIONS
SEARCH DETAIL