Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.201
Filter
Add more filters

Publication year range
1.
Circ Res ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864216

ABSTRACT

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1. lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.

2.
Hum Mol Genet ; 32(12): 2055-2067, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36917259

ABSTRACT

Barth syndrome is an X-linked disorder caused by loss-of-function mutations in Tafazzin (TAZ), an acyltransferase that catalyzes remodeling of cardiolipin, a signature phospholipid of the inner mitochondrial membrane. Patients develop cardiac and skeletal muscle weakness, growth delay and neutropenia, although phenotypic expression varies considerably between patients. Taz knockout mice recapitulate many of the hallmark features of the disease. We used mouse genetics to test the hypothesis that genetic modifiers alter the phenotypic manifestations of Taz inactivation. We crossed TazKO/X females in the C57BL6/J inbred strain to males from eight inbred strains and evaluated the phenotypes of first-generation (F1) TazKO/Y progeny, compared to TazWT/Y littermates. We observed that genetic background strongly impacted phenotypic expression. C57BL6/J and CAST/EiJ[F1] TazKO/Y mice developed severe cardiomyopathy, whereas A/J[F1] TazKO/Y mice had normal heart function. C57BL6/J and WSB/EiJ[F1] TazKO/Y mice had severely reduced treadmill endurance, whereas endurance was normal in A/J[F1] and CAST/EiJ[F1] TazKO/Y mice. In all genetic backgrounds, cardiolipin showed similar abnormalities in knockout mice, and transcriptomic and metabolomic investigations identified signatures of mitochondrial uncoupling and activation of the integrated stress response. TazKO/Y cardiac mitochondria were small, clustered and had reduced cristae density in knockouts in severely affected genetic backgrounds but were relatively preserved in the permissive A/J[F1] strain. Gene expression and mitophagy measurements were consistent with reduced mitophagy in knockout mice in genetic backgrounds intolerant of Taz mutation. Our data demonstrate that genetic modifiers powerfully modulate phenotypic expression of Taz loss-of-function and act downstream of cardiolipin, possibly by altering mitochondrial quality control.


Subject(s)
Barth Syndrome , Male , Female , Animals , Mice , Barth Syndrome/genetics , Barth Syndrome/metabolism , Cardiolipins/metabolism , Transcription Factors/metabolism , Disease Models, Animal , Acyltransferases/genetics , Mice, Knockout , Phenotype
3.
Plant Physiol ; 195(1): 617-639, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38285060

ABSTRACT

Revealing the genetic basis for stress-resistant traits in extremophile plants will yield important information for crop improvement. Zygophyllum xanthoxylum, an extant species of the ancient Mediterranean, is a succulent xerophyte that can maintain a favorable water status under desert habitats; however, the genetic basis of this adaptive trait is poorly understood. Furthermore, the phylogenetic position of Zygophyllales, to which Z. xanthoxylum belongs, remains controversial. In this study, we sequenced and assembled the chromosome-level genome of Z. xanthoxylum. Phylogenetic analysis showed that Zygophyllales and Myrtales form a separated taxon as a sister to the clade comprising fabids and malvids, clarifying the phylogenetic position of Zygophyllales at whole-genome scale. Analysis of genomic and transcriptomic data revealed multiple critical mechanisms underlying the efficient osmotic adjustment using Na+ and K+ as "cheap" osmolytes that Z. xanthoxylum has evolved through the expansion and synchronized expression of genes encoding key transporters/channels and their regulators involved in Na+/K+ uptake, transport, and compartmentation. It is worth noting that ZxCNGC1;1 (cyclic nucleotide-gated channels) and ZxCNGC1;2 constituted a previously undiscovered energy-saving pathway for Na+ uptake. Meanwhile, the core genes involved in biosynthesis of cuticular wax also featured an expansion and upregulated expression, contributing to the water retention capacity of Z. xanthoxylum under desert environments. Overall, these findings boost the understanding of evolutionary relationships of eudicots, illustrate the unique water retention mechanism in the succulent xerophyte that is distinct from glycophyte, and thus provide valuable genetic resources for the improvement of stress tolerance in crops and insights into the remediation of sodic lands.


Subject(s)
Phylogeny , Water , Zygophyllum , Water/metabolism , Zygophyllum/genetics , Zygophyllum/metabolism , Genome, Plant , Gene Expression Regulation, Plant , Genomics/methods
4.
J Cell Mol Med ; 28(13): e18457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963011

ABSTRACT

Allogeneic haematopoietic stem cell transplantation (allo-HSCT) can potentially cure malignant blood disorders and benign conditions such as haemoglobinopathies and immunologic diseases. However, allo-HSCT is associated with significant complications. The most common and debilitating among them is graft-versus-host disease (GVHD). In GVHD, donor-derived T cells mount an alloimmune response against the recipient. The alloimmune response involves several steps, including recognition of recipient antigens, activation and proliferation of T cells in secondary lymphoid organs, and homing into GVHD-targeted organs. Adhesion molecules on T cells and endothelial cells mediate homing of T cells into lymphoid and non-lymphoid tissues. In this study, we showed that Von Willebrand factor (VWF), an adhesion molecule secreted by activated endothelial cells, plays an important role in mouse models of GVHD. We investigated the effect of the VWF-cleaving protease ADAMTS13 on GVHD. We found that ADAMTS13 reduced the severity of GVHD after bone marrow transplantation from C57BL6 donor to BALB/C recipient mice. A recombinant VWF-A2 domain peptide also reduced GVHD in mice. We showed that ADAMTS13 and recombinant VWF-A2 reduced the binding of T cells to endothelial cells and VWF in vitro, and reduced the number of T cells in lymph nodes, Peyer's patches and GVHD-targeted organs in vivo. We identified LFA-1 (αLß2) as the binding site of VWF on T cells. Our results showed that blocking T-cell homing by ADAMTS13 or VWF-A2 peptide reduced the severity of the GVHD after allo-HSCT, a potentially novel method for treating and preventing GVHD.


Subject(s)
ADAMTS13 Protein , Graft vs Host Disease , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes , von Willebrand Factor , Graft vs Host Disease/etiology , Graft vs Host Disease/immunology , Animals , ADAMTS13 Protein/metabolism , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , von Willebrand Factor/metabolism , Humans , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/adverse effects , Disease Models, Animal , Bone Marrow Transplantation , Endothelial Cells/metabolism
5.
Clin Infect Dis ; 78(6): 1608-1616, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38147306

ABSTRACT

BACKGROUND: Older people with human immunodeficiency virus (HIV, PWH) are prone to using multiple medications due to higher rates of medical comorbidities and the use of antiretroviral therapy (ART). We assessed the prevalence and clinical impact of polypharmacy among PWH. METHODS: We leveraged clinical data from the AIDS Clinical Trials Group A5322 study "Long-Term Follow-up of Older HIV-infected Adults: Addressing Issues of Aging, HIV Infection and Inflammation" (HAILO). We included PWH aged ≥40 years with plasma HIV RNA levels <200 copies/µL. We assessed the relationship between polypharmacy (defined as the use of 5 or more prescription medications, excluding ART) and hyperpolypharmacy (defined as the use of 10 or more prescription medications, excluding ART) with slow gait speed (less than 1 meter/second) and falls, including recurrent falls. RESULTS: Excluding ART, 24% of study participants had polypharmacy and 4% had hyperpolypharmacy. Polypharmacy was more common in women (30%) than men (23%). Participants with polypharmacy had a higher risk of slow gait speed (odds ratio [OR] = 1.78; 95% confidence interval [CI] = 1.27-2.50) and increased risk of recurrent falls (OR = 2.12; 95% CI = 1.06-4.23). The risk for recurrent falls was further increased in those with hyperpolypharmacy compared with those without polypharmacy (OR = 3.46; 95% CI = 1.32-9.12). CONCLUSIONS: In this large, mixed-sex cohort of PWH aged ≥40 years, polypharmacy was associated with slow gait speed and recurrent falls, even after accounting for medical comorbidities, alcohol use, substance use, and other factors. These results highlight the need for increased focus on identifying and managing polypharmacy and hyperpolypharmacy in PWH.


Subject(s)
Accidental Falls , HIV Infections , Polypharmacy , Humans , Male , Female , HIV Infections/drug therapy , HIV Infections/complications , Accidental Falls/statistics & numerical data , Middle Aged , Aged , Walking Speed , Adult , Comorbidity , Risk Factors
6.
Small ; : e2400926, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470206

ABSTRACT

As corrosion products of Zn anodes in ZnSO4 electrolytes, Zn4 SO4 (OH)6 ·xH2 O with loose structure cannot suppress persistent side reactions but can increase the electrode polarization and induce dendrite growth, hindering the practical applications of Zn metal batteries. In this work, a functional layer is built on the Zn anode by a gelatin-assistant corrosion and low-temperature pyrolysis method. With the assistant of gelatin, undesired corrosion products are converted into a uniform nanoflake array comprising ZnO coated by gelatin-derived carbon on Zn foil (denoted Zn@ZnO@GC). It is revealed that the gelatin-derived carbons not only enhance the electron conductivity, facilitate Zn2+ desolvation, and boost transport/deposition kinetics, but also inhibit the occurrence of hydrogen evolution and corrosion reactions on the zincophilic Zn@ZnO@GC anode. Moreover, the 3D nanoflake array effectively homogenizes the current density and Zn2+ concentration, thus inhibiting the formation of dendrites. The symmetric cells using the Zn@ZnO@GC anodes exhibit superior cycling performance (over 7000 h at 1 mA cm-2 /1 mAh cm-2 ) and without short-circuiting even up to 25 mAh cm-2 . The Zn@ZnO@GC||NaV3 O8 full cell works stably for 5000 cycles even with a limited N/P ratio of ≈5.5, showing good application prospects.

7.
Plant Physiol ; 191(2): 957-973, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36459464

ABSTRACT

The photosynthetic mechanism of crop yields in fluctuating light environments in the field remains controversial. To further elucidate this mechanism, we conducted field and simulation experiments using maize (Zea mays) plants. Increased planting density enhanced the light fluctuation frequency and reduced the duration of daily high light, as well as the light-saturated photosynthetic rate, biomass, and yield per plant. Further analysis confirmed a highly significant positive correlation between biomass and yield per plant and the duration of photosynthesis related to daily high light. The simulation experiment indicated that the light-saturated photosynthetic rate of maize leaves decreased gradually and considerably when shortening the daily duration of high light. Under an identical duration of high light exposure, increasing the fluctuation frequency decreased the light-saturated photosynthetic rate slightly. Proteomic data also demonstrated that photosynthesis was mainly affected by the duration of high light and not by the light fluctuation frequency. Consequently, the current study proposes that an appropriate duration of daily high light under fluctuating light environments is the key factor for greatly improving photosynthesis. This is a promising mechanism by which the photosynthetic productivity and yield of maize can be enhanced under complex light environments in the field.


Subject(s)
Proteomics , Zea mays , Photosynthesis , Biomass , Plant Leaves , Light
8.
Exp Dermatol ; 33(1): e14958, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38009235

ABSTRACT

Cases of atopic dermatitis (AD)-like rash induced by IL-17A inhibitor secukinumab treatment (SI-AD) have been recently reported in psoriasis patients. To identify immune and inflammatory factors expression in SI-AD. A panel of 15 immune and inflammatory factors in peripheral blood samples from various groups, including patients with patients with SI-AD, psoriasis with secukinumab (S-stable), advanced psoriasis patients (Advanced) and healthy controls (HC). Interleukin-10 (IL-10), IL-4 and IL-17A were detected in skin tissue biopsy samples by immunohistochemistry and real-time quantitative polymerase chain reaction. The immunoglobulin E levels in the SI-AD patients exceeded normal values. The IL-10 levels in SI-AD patients were higher than those in S-stable patients, advanced patients and HC. The IL-4 levels in SI-AD patients were higher than that in S-stable patients and HC. The IL-17A levels in SI-AD patients were higher than those in advanced psoriasis patients and HC, but no significant differences were observed between SI-AD patients and S-stable patients. IL-10 and IL-4 levels were higher in AD-like rashes than in healthy skin, while IL-17A did not differ significantly between the two. Upon discontinuing secukinumab, and switching to oral cyclosporine, antihistamines, Janus kinase 1 inhibitor and topical glucocorticoids, SI-AD patients experienced significant improvement in their skin lesions. Upon reexamination, all 15 immune and inflammatory factors returned to normal levels. Immune shift from Th17 towards Th2 may occur in SI-AD, as indicated by abnormal expression of multiple immune and inflammatory factors observed in peripheral blood and skin tissues.


Subject(s)
Dermatitis, Atopic , Exanthema , Psoriasis , Humans , Dermatitis, Atopic/metabolism , Interleukin-10 , Interleukin-17/metabolism , Interleukin-4
9.
Mol Psychiatry ; 28(4): 1557-1570, 2023 04.
Article in English | MEDLINE | ID: mdl-36750736

ABSTRACT

Dysregulated neurite outgrowth and synapse formation underlie many psychiatric disorders, which are also manifested by wolfram syndrome (WS). Whether and how the causative gene WFS1 deficiency affects synapse formation remain elusive. By mirroring human brain development with cerebral organoids, WFS1-deficient cerebral organoids not only recapitulate the neuronal loss in WS patients, but also exhibit significantly impaired synapse formation and function associated with reduced astrocytes. WFS1 deficiency in neurons autonomously delays neuronal differentiation with altered expressions of genes associated with psychiatric disorders, and impairs neurite outgrowth and synapse formation with elevated cytosolic calcium. Intriguingly, WFS1 deficiency in astrocytes decreases the expression of glutamate transporter EAAT2 by NF-κB activation and induces excessive glutamate. When co-cultured with wildtype neurons, WFS1-deficient astrocytes lead to impaired neurite outgrowth and increased cytosolic calcium in neurons. Importantly, disrupted synapse formation and function in WFS1-deficient cerebral organoids and impaired neurite outgrowth affected by WFS1-deficient astrocytes are efficiently reversed with Riluzole treatment, by restoring EAAT2 expression in astrocytes. Furthermore, Riluzole rescues the depressive-like behavior in the forced swimming test and the impaired recognition and spatial memory in the novel object test and water maze test in Wfs1 conditional knockout mice. Altogether, our study provides novel insights into how WFS1 deficiency affects synapse formation and function, and offers a strategy to treat this disease.


Subject(s)
Human Embryonic Stem Cells , Wolfram Syndrome , Animals , Mice , Humans , Wolfram Syndrome/drug therapy , Wolfram Syndrome/genetics , Wolfram Syndrome/metabolism , Riluzole/pharmacology , Riluzole/metabolism , Calcium/metabolism , Human Embryonic Stem Cells/metabolism , Neurons/metabolism , Mice, Knockout , Synapses/metabolism
10.
Circ Res ; 131(11): e152-e168, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36263775

ABSTRACT

BACKGROUND: The pioneer transcription factor (TF) GATA4 (GATA Binding Protein 4) is expressed in multiple cardiovascular lineages and is essential for heart development. GATA4 lineage-specific occupancy in the developing heart underlies its lineage specific activities. Here, we characterized GATA4 chromatin occupancy in cardiomyocyte and endocardial lineages, dissected mechanisms that control lineage specific occupancy, and analyzed GATA4 regulation of endocardial gene expression. METHODS: We mapped GATA4 chromatin occupancy in cardiomyocyte and endocardial cells of embryonic day 12.5 (E12.5) mouse heart using lineage specific, Cre-activated biotinylation of GATA4. Regulation of GATA4 pioneering activity was studied in cell lines stably overexpressing GATA4. GATA4 regulation of endocardial gene expression was analyzed using single cell RNA sequencing and luciferase reporter assays. RESULTS: Cardiomyocyte-selective and endothelial-selective GATA4 occupied genomic regions had features of lineage specific enhancers. Footprints within cardiomyocyte- and endothelial-selective GATA4 regions were enriched for NKX2-5 (NK2 homeobox 5) and ETS1 (ETS Proto-Oncogene 1) motifs, respectively, and both of these TFs interacted with GATA4 in co-immunoprecipitation assays. In stable NIH3T3 cell lines expressing GATA4 with or without NKX2-5 or ETS1, the partner TFs re-directed GATA4 pioneer binding and augmented its ability to open previously inaccessible regions, with ETS1 displaying greater potency as a pioneer partner than NKX2-5. Single-cell RNA sequencing of embryonic hearts with endothelial cell-specific Gata4 inactivation identified Gata4-regulated endocardial genes, which were adjacent to GATA4-bound, endothelial regions enriched for both GATA4 and ETS1 motifs. In reporter assays, GATA4 and ETS1 cooperatively stimulated endothelial cell enhancer activity. CONCLUSIONS: Lineage selective non-pioneer TFs NKX2-5 and ETS1 guide the activity of pioneer TF GATA4 to bind and open chromatin and create active enhancers and mechanistically link ETS1 interaction to GATA4 regulation of endocardial development.


Subject(s)
Endocardium , GATA4 Transcription Factor , Proto-Oncogene Protein c-ets-1 , Animals , Mice , Chromatin/metabolism , Endocardium/metabolism , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Myocytes, Cardiac/metabolism , NIH 3T3 Cells , Proto-Oncogene Protein c-ets-1/metabolism
11.
Article in English | MEDLINE | ID: mdl-38752995

ABSTRACT

A novel actinobacterium, strain ZYX-F-186T, was isolated from marine sediment sampled on Yongxing Island, Hainan Province, PR China. Based on the results of 16S rRNA gene sequence analysis, strain ZYX-F-186T belongs to the genus Phytohabitans, with high similarity to Phytohabitans kaempferiae KK1-3T (98.3 %), Phytohabitans rumicis K11-0047T (98.1 %), Phytohabitans flavus K09-0627T (98.1 %), Phytohabitans houttuyneae K11-0057T (97.9 %), Phytohabitans suffuscus K07-0523T (97.7 %), and Phytohabitans aurantiacus RD004123T (97.7 %). Phylogenetic analysis of 16S rRNA gene sequences showed that the strain formed a single subclade in the genus Phytohabitans. The novel isolate contained meso-diaminopimelic acid, d-glutamic acid, glycine, d-alanine, and l-lysine in the cell wall. The whole-cell sugars were xylose, arabinose, ribose, and rhamnose. The predominant menaquinones were MK-9(H8), MK-9(H6), and MK-9(H4). The characteristic phospholipids were phosphatidylethanolamine, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylglycerol, and an unknown phospholipid. The major fatty acids (>5 %) were iso-C16 : 0, anteiso-C17 : 0, and iso-C18 : 0. Genome sequencing showed a DNA G+C content of 71.9 mol%. Low average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values demonstrated that strain ZYX-F-186T could be readily distinguished from its closely related species. Based on its phylogenetic, chemotaxonomic, and physiological characteristics, strain ZYX-F-186T represents a novel species of the genus Phytohabitans, for which the name Phytohabitans maris sp. nov. is proposed. The type strain is ZYX-F-186T (=CGMCC 4.8025T=CCTCC AA 2023025T=JCM 36507T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Vitamin K 2/chemistry , Nucleic Acid Hybridization , Cell Wall/chemistry
12.
Bioorg Chem ; 145: 107205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387395

ABSTRACT

Seven new indole-diterpenoids, penpaxilloids A-E (1-5), 7-methoxypaxilline-13-ene (6), and 10-hydroxy-paspaline (7), along with 20 known ones (8-27), were isolated from the marine-derived fungus Penicillium sp. ZYX-Z-143. Among them, compound 1 was a spiro indole-diterpenoid bearing a 2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one motif. Compound 2 was characterized by a unique heptacyclic system featuring a rare 3,6,8-trioxabicyclo[3.2.1]octane unit. The structures of the new compounds were established by extensive spectroscopic analyses, NMR calculations coupled with the DP4 + analysis, and ECD calculations. The plausible biogenetic pathway of two unprecedented indole diterpenoids, penpaxilloids A and B (1 and 2), was postulated. Compound 1 acted as a noncompetitive inhibitor against protein tyrosine phosphatase 1B (PTP1B) with IC50 value of 8.60 ± 0.53 µM. Compound 17 showed significant α-glucosidase inhibitory activity with IC50 value of 19.96 ± 0.32 µM. Moreover, compounds 4, 8, and 22 potently suppressed nitric oxide production on lipopolysaccharide-stimulated RAW264.7 macrophages.


Subject(s)
Diterpenes , Penicillium , Diterpenes/chemistry , Anti-Inflammatory Agents/chemistry , Macrophages , Indoles/chemistry , Penicillium/chemistry , Molecular Structure
13.
BMC Vet Res ; 20(1): 20, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200549

ABSTRACT

BACKGROUND: Mycoplasma ovipneumoniae (M. ovipneumoniae) is a significant pathogen causing respiratory infections in goats and sheep. This study focuses on investigating vulnerability of Hu sheep to M. ovipneumoniae infection in the context of late spring's cold weather conditions through detailed autopsy of a severely affected Hu sheep and whole genome sequencing of M. ovipneumoniae. RESULTS: The autopsy findings of the deceased sheep revealed severe pulmonary damage with concentrated tracheal and lung lesions. Histopathological analysis showed tissue degeneration, mucus accumulation, alveolar septum thickening, and cellular necrosis. Immunohistochemistry analysis indicated that M. ovipneumoniae was more in the bronchi compared to the trachea. Genome analysis of M. ovipneumoniae identified a 1,014,835 bp with 686 coding sequences, 3 rRNAs, 30 tRNAs, 6 CRISPRs, 11 genomic islands, 4 prophages, 73 virulence factors, and 20 secreted proteins. CONCLUSION: This study investigates the vulnerability of Hu sheep to M. ovipneumoniae infection during late spring's cold weather conditions. Autopsy findings showed severe pulmonary injury in affected sheep, and whole genome sequencing identified genetic elements associated with pathogenicity and virulence factors of M. ovipneumoniae.


Subject(s)
Goat Diseases , Mycoplasma ovipneumoniae , Pneumonia, Mycoplasma , Sheep Diseases , Animals , Sheep , Mycoplasma ovipneumoniae/genetics , Pneumonia, Mycoplasma/veterinary , Autopsy/veterinary , Goats , Virulence Factors , Whole Genome Sequencing/veterinary
14.
Phytopathology ; : PHYTO09230342R, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38648033

ABSTRACT

Actin filaments and their associated actin-binding proteins play key roles in plant innate immune signaling. CAP1, or cyclase-associated protein 1, is an important regulatory factor of the actin cytoskeleton-associated signaling network and was hypothesized here to be involved in resistance against wheat stripe rust because TaCAP1 expression was upregulated in response to Puccinia striiformis f. sp. tritici (Pst). Downregulation of TaCAP1 expression led to decreased resistance against Pst, in contrast to increased resistance upon TaCAP1 overexpressing, as demonstrated by the changes of phenotypes and hyphal growth. We found increased expression of pathogenesis-responsive or relative related genes and disease grade changed in TaCAP1 overexpressing plants. Our results also showed TaCAP1-regulated host resistance to Pst by inducing the production and accumulation of reactive oxygen species and mediating the salicylic acid signaling pathway. Additionally, TaCAP1 interacted with chlorophyll a/b-binding proteins TaLHCB1.3 and TaLHCB1.4, also known as the light-harvesting chlorophyll-protein complex II subunit B, which belong to the light-harvesting complex II protein family. Silencing of two TaLHCB1 genes showed higher susceptibility to Pst, which reduced wheat resistance against Pst. Therefore, the data presented herein further illuminate our understanding that TaCAP1 interacts with TaLHCB1s and functions as a positive regulator of wheat resistance against stripe rust.

15.
Ann Noninvasive Electrocardiol ; 29(4): e13130, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38932572

ABSTRACT

OBJECTIVE: To explore the influence of nutritional status on adverse clinical events in elderly patients with nonvalvular atrial fibrillation. METHODS: This retrospective observational cohort study included 196 patients, 75-102-years-old, with nonvalvular atrial fibrillation, hospitalized in our hospital. The nutritional status was assessed using Mini-Nutritional Assessment-Short Form (MNA-SF). Patients with MNA-SF scores of 0-11 and 12-14 were included in the malnutrition and nonmalnutrition groups, respectively. RESULTS: The average age of the malnutrition group was higher than that of the nonmalnutrition group, and the levels of body mass index (BMI), hemoglobin (HGB), and albumin (ALB) were significantly lower than those of the nonmalnutrition group, with statistical significance (p < .05). The incidence of all-cause death in the malnutrition group was higher than that in the nonmalnutrition group (p = .007). Kaplan-Meier curve indicated that malnutrition patients have a higher risk of all-cause death (log-rank test, p = .001) and major bleeding events (p = .017). Multivariate Cox proportional hazard regression analysis corrected for confounders showed that malnutrition was an independent risk factor of all-cause death (HR = 1.780, 95%CI:1.039-3.050, p = .036). The malnutrition group had a significantly high incidence of major bleeding than the nonmalnutrition group (p = .026), and there was no significant difference in the proportion of anticoagulation therapy (p = .082) and the incidence of ischemic stroke/systemic embolism (p = .310) between the two groups. CONCLUSIONS: Malnutrition is an independent risk factor of all-cause death in elderly patients with atrial fibrillation. The incidence of major bleeding in malnourished elderly patients with atrial fibrillation is high, and the benefit of anticoagulation therapy is not obvious.


Subject(s)
Atrial Fibrillation , Malnutrition , Nutritional Status , Humans , Atrial Fibrillation/complications , Atrial Fibrillation/epidemiology , Retrospective Studies , Female , Male , Aged , Aged, 80 and over , Malnutrition/complications , Cohort Studies , Risk Factors , Nutrition Assessment , Geriatric Assessment/methods , Geriatric Assessment/statistics & numerical data
16.
Mol Cell Proteomics ; 21(1): 100178, 2022 01.
Article in English | MEDLINE | ID: mdl-34798331

ABSTRACT

MS-based immunopeptidomics is maturing into an automatized and high-throughput technology, producing small- to large-scale datasets of clinically relevant major histocompatibility complex (MHC) class I-associated and class II-associated peptides. Consequently, the development of quality control (QC) and quality assurance systems capable of detecting sample and/or measurement issues is important for instrument operators and scientists in charge of downstream data interpretation. Here, we created MhcVizPipe (MVP), a semiautomated QC software tool that enables rapid and simultaneous assessment of multiple MHC class I and II immunopeptidomic datasets generated by MS, including datasets generated from large sample cohorts. In essence, MVP provides a rapid and consolidated view of sample quality, composition, and MHC specificity to greatly accelerate the "pass-fail" QC decision-making process toward data interpretation. MVP parallelizes the use of well-established immunopeptidomic algorithms (NetMHCpan, NetMHCIIpan, and GibbsCluster) and rapidly generates organized and easy-to-understand reports in HTML format. The reports are fully portable and can be viewed on any computer with a modern web browser. MVP is intuitive to use and will find utility in any specialized immunopeptidomic laboratory and proteomics core facility that provides immunopeptidomic services to the community.


Subject(s)
Histocompatibility Antigens Class I , Software , Peptides , Proteomics , Quality Control
17.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33361330

ABSTRACT

The paucity of knowledge about cardiomyocyte maturation is a major bottleneck in cardiac regenerative medicine. In development, cardiomyocyte maturation is characterized by orchestrated structural, transcriptional, and functional specializations that occur mainly at the perinatal stage. Sarcomeres are the key cytoskeletal structures that regulate the ultrastructural maturation of other organelles, but whether sarcomeres modulate the signal transduction pathways that are essential for cardiomyocyte maturation remains unclear. To address this question, here we generated mice with cardiomyocyte-specific, mosaic, and hypomorphic mutations of α-actinin-2 (Actn2) to study the cell-autonomous roles of sarcomeres in postnatal cardiomyocyte maturation. Actn2 mutation resulted in defective structural maturation of transverse-tubules and mitochondria. In addition, Actn2 mutation triggered transcriptional dysregulation, including abnormal expression of key sarcomeric and mitochondrial genes, and profound impairment of the normal progression of maturational gene expression. Mechanistically, the transcriptional changes in Actn2 mutant cardiomyocytes strongly correlated with those in cardiomyocytes deleted of serum response factor (SRF), a critical transcription factor that regulates cardiomyocyte maturation. Actn2 mutation increased the monomeric form of cardiac α-actin, which interacted with the SRF cofactor MRTFA and perturbed its nuclear localization. Overexpression of a dominant-negative MRTFA mutant was sufficient to recapitulate the morphological and transcriptional defects in Actn2 and Srf mutant cardiomyocytes. Together, these data indicate that Actn2-based sarcomere organization regulates structural and transcriptional maturation of cardiomyocytes through MRTF-SRF signaling.


Subject(s)
Actinin/genetics , Myocytes, Cardiac/metabolism , Sarcomeres/metabolism , Actinin/metabolism , Animals , Cell Nucleus/metabolism , Cytoskeleton/metabolism , Gene Expression Regulation/genetics , Mice , Mitochondria/metabolism , Morphogenesis , Mutation , Myocytes, Cardiac/pathology , Sarcomeres/pathology , Serum Response Factor/metabolism , Signal Transduction , Trans-Activators/metabolism , Transcription Factors/metabolism
18.
Chem Biodivers ; 21(6): e202400567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602253

ABSTRACT

Five new cytochalasins, diaporchalasins A-E (1-5), together with 14 known congeners (6-19) were isolated from the endophytic fungus Diaporthe sp. BMX12, which was isolated from the branches of Aquilaria sinensis. The structures of the new compounds were elucidated by extensive spectroscopic analyses including high-resolution electron spray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR). Their absolute configurations were assigned by theoretical electronic circular dichroism (ECD) calculations. Compounds 11 and 12 featuring a keto carbonyl at C-21 displayed cytotoxicity toward K562, BEL-7402, SGC-7901, A549, and HeLa cell lines with IC50 values ranging from 4.4 to 47.4 µM.


Subject(s)
Ascomycota , Cytochalasins , Drug Screening Assays, Antitumor , Thymelaeaceae , Cytochalasins/chemistry , Cytochalasins/pharmacology , Cytochalasins/isolation & purification , Humans , Thymelaeaceae/chemistry , Thymelaeaceae/microbiology , Ascomycota/chemistry , Ascomycota/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Molecular Structure , Cell Proliferation/drug effects , Structure-Activity Relationship , Dose-Response Relationship, Drug , Molecular Conformation , Cell Survival/drug effects
19.
Sensors (Basel) ; 24(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38400369

ABSTRACT

Amyloid plays a critical role in the pathogenesis of Alzheimer's disease (AD) and can aggregate to form oligomers and fibrils in the brain. There is increasing evidence that highly toxic amyloid-ß oligomers (AßOs) lead to tau protein aggregation, hyperphosphorylation, neuroinflammation, neuronal loss, synaptic loss, and dysfunction. Although the effects of AßOs on neurons have been investigated using conventional biochemical experiments, there are no established criteria for electrical evaluation. To this end, we explored electrophysiological changes in mouse hippocampal neurons (HT22) following exposure to AßOs and/or naringenin (Nar, a flavonoid compound) using electrical impedance spectroscopy (EIS). AßO-induced HT22 showed a decreased impedance amplitude and increased phase angle, and the addition of Nar reversed these changes. The characteristic frequency was markedly increased with AßO exposure, which was also reversed by Nar. The AßOs decreased intranuclear and cytoplasmic resistance and increased nucleus resistance and extracellular capacitance. Overall, the innovative construction of the eight-element CPE-equivalent circuit model further reflects that the pseudo-capacitance of the cell membrane and cell nucleus was increased in the AßO-induced group. This study conclusively revealed that AßOs induce cytotoxic effects by disrupting the resistance characteristics of unit membranes. The results further support that EIS is an effective technique for evaluating AßO-induced neuronal damage and microscopic electrical distinctions in the sub-microscopic structure of reactive cells.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/chemistry , Electric Impedance , Alzheimer Disease/pathology , Neurons/metabolism , Synapses/metabolism , Synapses/pathology
20.
J Asian Nat Prod Res ; 26(4): 489-496, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37642432

ABSTRACT

Two new compounds named 3(S)-hydroxy-1-(2,4,5-trihydroxy-3,6- dimethylphenyl)-hex-4E-en-1-one (1) and acremonilactone (2), together with nine known compounds (3-11), were isolated from the fermentation broth of Acremonium sp. associated with marine sediments collected from South China Sea. NMR and HRESIMS spectroscopic analysis elucidated the structure of two new compounds. Compound 2 had characteristic rotary gate shape skeleton with a six-membered lactone. Compounds 1 and 9 showed DPPH radical scavenging activity with inhibition rates of 96.50 and 85.95% at the concentration of 0.5 mg/ml, respectively. Moreover, compounds 4, 6 and 11 showed definite antibacterial activity against Staphylococcus aureus ATCC 6538.


Subject(s)
Acremonium , Acremonium/chemistry , Molecular Structure , Fungi , Staphylococcus aureus , Magnetic Resonance Spectroscopy , Anti-Bacterial Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL