Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Virol ; 96(9): e0033622, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35404082

ABSTRACT

Epstein-Barr virus (EBV), the first identified human tumor virus, is etiologically associated with various kinds of malignant and benign diseases, accounting for 265,000 cancer incident cases and 164,000 cancer deaths in 2017. EBV prophylactic vaccine development has been gp350 centered for several decades. However, clinical studies show that gp350-centered vaccines fail to prevent EBV infection. Advances in the EBV infection mechanisms shed light on gB and gHgL, the two key components of the infection apparatus. In this study, for the first time, we utilized recombinant vesicular stomatitis virus (VSV) to display EBV gB (VSV-ΔG-gB/gB-G) or gHgL (VSV-ΔG-gHgL). In vitro studies confirmed successful virion production and glycoprotein presentation on the virion surface. In mouse models, VSV-ΔG-gB/gB-G or VSV-ΔG-gHgL elicited potent humoral responses. Neutralizing antibodies elicited by VSV-ΔG-gB/gB-G were prone to prevent B cell infection, while those elicited by VSV-ΔG-gHgL were prone to prevent epithelial cell infection. Combinatorial vaccination yields an additive effect. The ratio of endpoint neutralizing antibody titers to the endpoint total IgG titers immunized with VSV-ΔG-gHgL was approximately 1. The ratio of IgG1/IgG2a after VSV-ΔG-gB/gB-G immunization was approximately 1 in a dose-dependent, adjuvant-independent manner. Taken together, VSV-based EBV vaccines can elicit a high ratio of epithelial and B lymphocyte neutralizing antibodies, implying their unique potential as EBV prophylactic vaccine candidates. IMPORTANCE Epstein-Barr virus (EBV), one of the most common human viruses and the first identified human oncogenic virus, accounted for 265,000 cancer incident cases and 164,000 cancer deaths in 2017 as well as millions of nonmalignant disease cases. So far, no prophylactic vaccine is available to prevent EBV infection. In this study, for the first time, we reported the VSV-based EBV vaccines presenting two key components of the EBV infection apparatus, gB and gHgL. We confirmed potent antigen-specific antibody generation; these antibodies prevented EBV from infecting epithelial cells and B cells, and the IgG1/IgG2a ratio indicated balanced humoral-cellular responses. Taken together, we suggest VSV-based EBV vaccines are potent prophylactic candidates for clinical studies and help eradicate numerous EBV-associated malignant and benign diseases.


Subject(s)
Epstein-Barr Virus Infections , Vesiculovirus , Viral Vaccines , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Epstein-Barr Virus Infections/prevention & control , Herpesvirus 4, Human/physiology , Immunity, Humoral , Immunoglobulin G/blood , Mice , Vesiculovirus/genetics , Viral Vaccines/immunology
2.
Opt Express ; 27(12): 16550-16559, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31252879

ABSTRACT

Reconfigurable design is an effective way to achieve multifunctional devices for system integration. Limited by the feeding network for multi-resonators, multimode absorbers with more than four modes are rarely reported. In this paper, a frequency-reconfigurable metamaterial absorber/reflector resonating at 3.05, 4.45 and 5.54 GHz is proposed. Based on a stereoscopic feeding network and a strategic arranged structure with loaded switching diodes, the proposed structure can realize the reconfigurable eight operating modes, including triple-band (111)/dual-band (110, 101, 011)/single-band (100, 010, 001) absorption and reflection (000) without re-optimizing and re-engineering the structure. The simulated results are confirmed by measuring a fabricated prototype. Our design provides a strategy to realize multifunction devices in microwave or even higher frequencies.

3.
PLoS One ; 19(5): e0299001, 2024.
Article in English | MEDLINE | ID: mdl-38805439

ABSTRACT

Polypropylene fiber was equally mixed into alkali-activated slag fly ash geopolymer in order to ensure the filling effect of mine goaf and improve the stability of cemented gangue paste filling material with ecological matrix. Triaxial compression tests were then conducted under various conditions. The mechanical properties and damage characteristics of composite paste filling materials are studied, and the damage evolution model of paste filling materials under triaxial compression is established, based on the deviatoric stress-strain curve generated by the progressive failure behavior of samples. Internal physical and chemical mechanisms of the evolution of structure and characteristics are elucidated and comprehended via the use of SEM-EDS and XRD micro-techniques. The results show that the fiber can effectively improve the ultimate strength and the corresponding effective stress strength index of the sample within the scope of the experimental study. The best strengthening effect is achieved when the amount of NaOH is 3% of the mass of the solid material, the amount of fiber is 5‰ of the mass of the solid material, and the length of the fiber is about 12 mm. The action mode of the fiber in the sample is mainly divided into single-grip anchoring and three-dimensional mesh traction. As the crack initiates and develops, connection occurs in the matrix, where the fiber has an obvious interference and retardation effect on the crack propagation, thereby transforming the brittle failure into a ductile failure and consequently improving the fracture properties of the ecological cementitious coal gangue matrix. The theoretical damage evolution model of a segmented filling body is constructed by taking the initial compaction stage end point as the critical point, and the curve of the damage evolution model of the specimen under different conditions is obtained. The theoretical model is verified by the results from the triaxial compression test. We concluded that the experimental curve is in good agreement with the theoretical curve. Therefore, the established theoretical model has a certain reference value for the analysis and evaluation of the mechanical properties of paste filling materials. The research results can improve the utilization rate of solid waste resources.


Subject(s)
Calcium Sulfate , Compressive Strength , Materials Testing , Calcium Sulfate/chemistry , Construction Materials/analysis , Polypropylenes/chemistry , Coal Ash/chemistry , Stress, Mechanical , Cementation/methods
4.
PLoS One ; 19(5): e0298263, 2024.
Article in English | MEDLINE | ID: mdl-38722883

ABSTRACT

The design of tuned mass damper (TMD) parameters is influenced by the soil-structure-TMD coupling system; thus, it is important to consider the soil-structure interaction (SSI) for the vibration control effect of the TMD. Recently, the acquisition of TMD parameters considering soil-structure interactions has only remained at the theoretical stage, lacking relevant experimental verification. Traditional TMD face the problems of occupying a large building space, increasing construction costs, and non-replaceable components. In this study, an assembled wall-type damping TMD was designed. By comparing the dynamic response of the uncontrolled and controlled structures equipped with the newly assembled wall-type damping TMD in the shaking table test on a soft soil foundation, we analyzed whether the SSI effect was considered in the TMD design parameters on the damping effect of the newly assembled wall-type tuned mass damper. The TMD parameters optimized using the artificial intelligence algorithm were verified experimentally. The results indicated that the traditional TMD design parameters were discordant because the SSI effect was not considered. The SSI effect in the soil effectively reduces the dynamic response of the superstructure. By considering the SSI effect and improving the multi-population genetic algorithm, a wall-type damping TMD with optimized parameters can achieve a good damping effect.


Subject(s)
Algorithms , Soil , Soil/chemistry , Earthquakes , Vibration
5.
Materials (Basel) ; 11(9)2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30189622

ABSTRACT

In this paper, a polarization-controlled and flexible metamaterial absorber made of a set of wires etched on ultrathin teflon dielectric substrate is proposed. The simulation results showed that the proposed absorber achieved single-band absorptivity of 99.8% at 6.64 GHz for the TM (transverse magnetic) polarization wave and penta-band absorptivity of more than 99% at 11.68 GHz, 13.58 GHz, 15.48 GHz, 17.38 GHz, and 19.28 GHz for the TE (transverse electric) polarization waves. Moreover, each absorption peak had very narrow relative bandwidth and the position of penta-band absorption peaks could be adjusted by changing the length of the corresponding wire or selecting suitable substrate material according to actual requirements, because each wire can independently respond to electromagnetic (EM) waves. Furthermore, the surface current distributions corresponding to each absorption peak were studied to demonstrate the absorption mechanism. The absorption properties of the proposed structure with different bending radii and under different incident angles of the EM waves were investigated, showing good flexibility and incident angle-insensitive properties. In addition, the simulation results were confirmed by measuring a fabricated prototype. The proposed absorber may have useful applications in polarizers, sensors, bolometers, polarization detectors, etc.

SELECTION OF CITATIONS
SEARCH DETAIL