Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Plant Physiol ; 195(4): 2596-2616, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38637315

ABSTRACT

Seed deterioration during storage is a major problem in agricultural and forestry production and for germplasm conservation. Our previous studies have shown that a mitochondrial outer membrane protein VOLTAGE-DEPENDENT ANION CHANNEL (VDAC) is involved in programmed cell death-like viability loss during the controlled deterioration treatment (CDT) of elm (Ulmus pumila L.) seeds, but its underlying mechanism remains unclear. In this study, we demonstrate that the oxidative modification of GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPDH) is functioned in the gate regulation of VDAC during the CDT of elm seeds. Through biochemical and cytological methods and observations of transgenic material [Arabidopsis (Arabidopsis thaliana), Nicotiana benthamiana, and yeast (Saccharomyces cerevisiae)], we demonstrate that cysteine S-glutathionylated UpGAPDH1 interacts with UpVDAC3 during seed aging, which leads to a mitochondrial permeability transition and aggravation of cell death, as indicated by the leakage of the mitochondrial proapoptotic factor cytochrome c and the emergence of apoptotic nucleus. Physiological assays and inductively coupled plasma mass spectrometry analysis revealed that GAPDH glutathionylation is mediated by increased glutathione, which might be caused by increases in the concentrations of free metals, especially Zn. Introduction of the Zn-specific chelator TPEN [(N,N,N',N'-Tetrakis (2-pyridylmethyl)ethylenediamine)] significantly delayed seed aging. We conclude that glutathionylated UpGAPDH1 interacts with UpVDAC3 and serves as a proapoptotic protein for VDAC-gating regulation and cell death initiation during seed aging.


Subject(s)
Cell Death , Glutathione , Seeds , Seeds/metabolism , Glutathione/metabolism , Voltage-Dependent Anion Channels/metabolism , Voltage-Dependent Anion Channels/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Nicotiana/genetics , Nicotiana/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Mitochondria/metabolism , Saccharomyces cerevisiae/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glycolysis , Plants, Genetically Modified , Zinc/metabolism
2.
J Cell Mol Med ; 28(3): e18085, 2024 02.
Article in English | MEDLINE | ID: mdl-38146129

ABSTRACT

Interleukin-6 (IL-6) is a cytokine generated by healthy constituents of the skin, but is also up-regulated by a wide range of skin lesions and inflammatory conditions to trigger cytopathy of skin cells. TRIM27 was identified to contribute to the functional effects of IL-6 on skin cells. However, the underlying mechanism was not clear. Lentivirus infection was used for gene overexpression or silencing. RT-PCR and Western blot were used to respectively assess mRNA and protein levels. Cell viability was assessed by CCK-8 assay. Extracellular flux analysis was used to assess the levels of oxygen consumption rate and extracellular acidification rate. Mouse back skin was treated with imiquimod to produce psoriasis-like inflammation in vivo. Histological assessment and immunohistochemistry staining were respectively applied to analyse lesioned mouse and human skin samples. IL-6-induced increased viability, glycolysis and inflammation in keratinocytes was inhibited both by a chemical methylation inhibitor and by METTL14 knockdown. Further investigation found that METTL14 induces m6A methylation of TRIM27, which is recognized by a m6A reader, IGF2BP2. Elevation of TRIM27 level and activation of IL-6/STAT3 signalling pathway were found in an in vivo psoriasis-like inflammation model, whereas inhibition m6A methylation strongly alleviated the inflammation. Finally, METTL14, TRIM27, STAT3, p-STAT3 and IL-6 expressions were all found to be increased in clinical skin samples of psoriatic patients. Our results unravelled METTL14/TRIM27/IGF2BP2 signalling axis in keratinocyte cytopathy, which plays a critical role in facilitating the activation of IL-6/STAT3 signalling pathway. Our findings should provide inspirations for the design of new therapeutics for skin inflammatory diseases including psoriasis.


Subject(s)
Adenine , Interleukin-6 , Methyltransferases , Psoriasis , Animals , Humans , Mice , Adenine/analogs & derivatives , DNA-Binding Proteins , Glycolysis , HaCaT Cells , Inflammation/pathology , Interleukin-6/pharmacology , Keratinocytes/pathology , Nuclear Proteins , Psoriasis/pathology , RNA-Binding Proteins , Transcription Factors , Tripartite Motif Proteins
3.
J Transl Med ; 22(1): 436, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720350

ABSTRACT

BACKGROUND: Subarachnoid hemorrhage (SAH) represents a form of cerebrovascular event characterized by a notable mortality and morbidity rate. Fibroblast growth factor 21 (FGF21), a versatile hormone predominantly synthesized by the hepatic tissue, has emerged as a promising neuroprotective agent. Nevertheless, the precise impacts and underlying mechanisms of FGF21 in the context of SAH remain enigmatic. METHODS: To elucidate the role of FGF21 in inhibiting the microglial cGAS-STING pathway and providing protection against SAH-induced cerebral injury, a series of cellular and molecular techniques, including western blot analysis, real-time polymerase chain reaction, immunohistochemistry, RNA sequencing, and behavioral assays, were employed. RESULTS: Administration of recombinant fibroblast growth factor 21 (rFGF21) effectively mitigated neural apoptosis, improved cerebral edema, and attenuated neurological impairments post-SAH. Transcriptomic analysis revealed that SAH triggered the upregulation of numerous genes linked to innate immunity, particularly those involved in the type I interferon (IFN-I) pathway and microglial function, which were notably suppressed upon adjunctive rFGF21 treatment. Mechanistically, rFGF21 intervention facilitated mitophagy in an AMP-activated protein kinase (AMPK)-dependent manner, thereby preventing mitochondrial DNA (mtDNA) release into the cytoplasm and dampening the activation of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Conditional knockout of STING in microglia markedly ameliorated the inflammatory response and mitigated secondary brain injuries post-SAH. CONCLUSION: Our results present the initial evidence that FGF21 confers a protective effect against neuroinflammation-associated brain damage subsequent to SAH. Mechanistically, we have elucidated a novel pathway by which FGF21 exerts this neuroprotection through inhibition of the cGAS-STING signaling cascade.


Subject(s)
Fibroblast Growth Factors , Membrane Proteins , Mice, Inbred C57BL , Mitophagy , Neuroinflammatory Diseases , Nucleotidyltransferases , Signal Transduction , Subarachnoid Hemorrhage , Animals , Membrane Proteins/metabolism , Fibroblast Growth Factors/metabolism , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Mitophagy/drug effects , Signal Transduction/drug effects , Nucleotidyltransferases/metabolism , Male , Mice , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Apoptosis/drug effects
4.
Plant Cell Environ ; 47(5): 1782-1796, 2024 May.
Article in English | MEDLINE | ID: mdl-38315745

ABSTRACT

Alternative splicing (AS) is an important regulatory mode at the post-transcriptional level, through which many flowering genes regulate floral transition by producing multiple transcripts, and splicing factors have essential roles in this process. Hydrogen sulphide (H2S) is a newly found gasotransmitter that has critical physiological roles in plants, and one of its potential modes of action is via persulfidation of target proteins at specific cysteine sites. Previously, it has been shown that both the splicing factor AtU2AF65a and H2S are involved in the regulation of plant flowering. This study found that, in Arabidopsis, the promoting effect of H2S on flowering was abolished in atu2af65a-4 mutants. Transcriptome analyses showed that when AtU2AF65a contained mutations, the regulatory function of H2S during the AS of many flowering genes (including SPA1, LUH, LUG and MAF3) was inhibited. The persulfidation assay showed that AtU2AF65a can be persulfidated by H2S, and the RNA immunoprecipitation data indicated that H2S could alter the binding affinity of AtU2AF65a to the precursor messenger RNA of the above-mentioned flowering genes. Overall, our results suggest that H2S may regulate the AS of flowering-related genes through persulfidation of splicing factor AtU2AF65a and thus lead to early flowering in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hydrogen Sulfide , Arabidopsis/genetics , Arabidopsis/metabolism , RNA Splicing Factors/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hydrogen Sulfide/metabolism , Alternative Splicing/genetics , RNA Precursors/genetics , Gene Expression Regulation, Plant , Flowers/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Curr Atheroscler Rep ; 26(8): 383-394, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878139

ABSTRACT

PURPOSE OF REVIEW: The primary objective of this review is to explore the pathophysiological roles and clinical implications of lipoprotein(a) [Lp(a)] in the context of atherosclerotic cardiovascular disease (ASCVD). We seek to understand how Lp(a) contributes to inflammation and arteriosclerosis, aiming to provide new insights into the mechanisms of ASCVD progression. RECENT FINDINGS: Recent research highlights Lp(a) as an independent risk factor for ASCVD. Studies show that Lp(a) not only promotes the inflammatory processes but also interacts with various cellular components, leading to endothelial dysfunction and smooth muscle cell proliferation. The dual role of Lp(a) in both instigating and, under certain conditions, mitigating inflammation is particularly noteworthy. This review finds that Lp(a) plays a complex role in the development of ASCVD through its involvement in inflammatory pathways. The interplay between Lp(a) levels and inflammatory responses highlights its potential as a target for therapeutic intervention. These insights could pave the way for novel approaches in managing and preventing ASCVD, urging further investigation into Lp(a) as a therapeutic target.


Subject(s)
Atherosclerosis , Inflammation , Lipoprotein(a) , Humans , Lipoprotein(a)/metabolism , Lipoprotein(a)/blood , Atherosclerosis/metabolism , Atherosclerosis/immunology , Inflammation/metabolism , Animals , Risk Factors
6.
Vet Res ; 55(1): 60, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750480

ABSTRACT

Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.


Subject(s)
Fish Diseases , Molecular Chaperones , Streptococcal Infections , Streptococcus agalactiae , Stress, Physiological , Animals , Mice , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Cichlids , Fish Diseases/microbiology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , RAW 264.7 Cells , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Streptococcus agalactiae/physiology , Streptococcus agalactiae/pathogenicity , Streptococcus agalactiae/genetics , Virulence
7.
Helicobacter ; 29(4): e13115, 2024.
Article in English | MEDLINE | ID: mdl-39097925

ABSTRACT

BACKGROUND: Patient education contributes to improve public awareness of Helicobacter pylori. Large language models (LLMs) offer opportunities to revolutionize patient education transformatively. This study aimed to assess the quality of patient educational materials (PEMs) generated by LLMs and compared with physician sourced. MATERIALS AND METHODS: Unified instruction about composing a PEM about H. pylori at a sixth-grade reading level in both English and Chinese were given to physician and five LLMs (Bing Copilot, Claude 3 Opus, Gemini Pro, ChatGPT-4, and ERNIE Bot 4.0). The assessments of the completeness and comprehensibility of the Chinese PEMs were conducted by five gastroenterologists and 50 patients according to three-point Likert scale. Gastroenterologists were asked to evaluate both English and Chinese PEMs and determine the accuracy and safety. The accuracy was assessed by six-point Likert scale. The minimum acceptable scores were 4, 2, and 2 for accuracy, completeness, and comprehensibility, respectively. The Flesch-Kincaid and Simple Measure of Gobbledygook scoring systems were employed as readability assessment tools. RESULTS: Accuracy and comprehensibility were acceptable for English PEMs of all sources, while completence was not satisfactory. Physician-sourced PEM had the highest accuracy mean score of 5.60 and LLM-generated English PEMs ranged from 4.00 to 5.40. The completeness score was comparable between physician-sourced PEM and LLM-generated PEMs in English. Chinese PEMs from LLMs proned to have lower score in accuracy and completeness assessment than English PEMs. The mean score for completeness of five LLM-generated Chinese PEMs was 1.82-2.70 in patients' perspective, which was higher than gastroenterologists' assessment. Comprehensibility was satisfactory for all PEMs. No PEM met the recommended sixth-grade reading level. CONCLUSION: LLMs have potential in assisting patient education. The accuracy and comprehensibility of LLM-generated PEMs were acceptable, but further optimization on improving completeness and accounting for a variety of linguistic contexts are essential for enhancing the feasibility.


Subject(s)
Artificial Intelligence , Helicobacter Infections , Patient Education as Topic , Humans , Patient Education as Topic/methods , Helicobacter Infections/diagnosis , Helicobacter pylori , Male , Female , Middle Aged , Adult
8.
Phys Chem Chem Phys ; 26(5): 4589-4596, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38250962

ABSTRACT

Multivalent-ion batteries have garnered significant attention due to their high energy density, low cost, and superior safety. Calcium-ion batteries (CIBs) are regarded as the next-generation energy storage systems for their abundant natural resources and bivalent characteristics. However, the absence of high-performance anode materials poses a significant obstacle to the progress of battery technology. Two-dimensional (2D) Dirac materials have excellent conductivity and abundant active sites, rendering them promising candidates as anode materials. A novel 2D Dirac material known as "graphene+" has been theoretically reported, exhibiting prominent properties including good stability, exceptional ductility, and remarkable electronic conductivity. By using first-principles calculations, we systematically investigate the performance of graphene+ as an anode material for CIBs. Graphene+ exhibits an ultra-high theoretical capacity (1487.7 mA h g-1), a small diffusion barrier (0.21 eV), and a low average open-circuit voltage (0.51 V). Furthermore, we investigate the impact of the electrolyte solvation on the performance of Ca-ion adsorption and migration. Upon contact with electrolyte solvents, graphene+ exhibits strong adsorption strength and rapid migration of Ca-ions on its surface. These results demonstrate the promising potential of graphene+ as a high-performance anode material for CIBs.

9.
Dis Esophagus ; 37(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38189470

ABSTRACT

Herein, we aimed to evaluate the efficacy and safety of camrelizumab combined with docetaxel and carboplatin as a neoadjuvant treatment for locally advanced oesophageal squamous cell carcinoma (OSCC). Fifty-one patients with OSCC, treated from July 2020 to October 2022, were analyzed. Of them, 41 patients underwent surgery 4-8 weeks after undergoing two cycles of camrelizumab (200 mg IV Q3W) combined with docetaxel (75 mg/m2 IV Q3W) and carboplatin (area under the curve = 5-6 IV Q3W). The primary endpoint was the pathological complete response rate. All 51 patients (100%) experienced treatment-related grades 1-2 adverse events, and 2 patients (3.9%) experienced grade 4 events (including elevated alanine transaminase/aspartate transferase levels and Guillain-Barre syndrome). Fifty patients were evaluated for the treatment efficacy. Of them, 13 achieved complete response, and the objective response rate was 74%. Only 41 patients underwent surgical treatment. The pathological complete response rate was 17.1%, the major pathological response rate was 63.4%, and the R0 resection rate was 100%. Approximately 22% of the patients had tumor regression grades 0. Eight patients (19.5%) developed surgery-related complications. The median follow-up time was 18 months (range: 3-29 months). Four patients experienced disease progression, while four died. The median disease-free survival and overall survival were not reached. Camrelizumab combined with docetaxel and carboplatin is an effective and safe neoadjuvant treatment for locally advanced OSCC. This regimen may afford a potential strategy to treat patients with locally advanced OSCC.


Subject(s)
Antibodies, Monoclonal, Humanized , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Docetaxel/therapeutic use , Carboplatin , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Neoadjuvant Therapy , Neoplasm Staging , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Esophageal Neoplasms/pathology
10.
Phytother Res ; 38(8): 3856-3876, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761036

ABSTRACT

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.


Subject(s)
Artemisinins , Lung Neoplasms , Mitochondria , Mitochondrial Precursor Protein Import Complex Proteins , Pyroptosis , Lung Neoplasms/drug therapy , Artemisinins/pharmacology , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Pyroptosis/drug effects , Mice , Animals , Cell Line, Tumor , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , DNA, Mitochondrial , A549 Cells , Signal Transduction/drug effects , Mice, Inbred BALB C
11.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000300

ABSTRACT

Maize is an important crop used for food, feed, and fuel. Abiotic stress is an important factor affecting maize yield. The EPF/EPFL gene family encodes class-specific secretory proteins that play an important role in the response to abiotic stress in plants. In order to explore and utilize the EPF/EPFL family in maize, the family members were systematically identified, and their chromosomal localization, physicochemical properties, cis-acting element prediction in promoters, phylogenetic tree construction, and expression pattern analysis were carried out using bioinformatics techniques. A total of 18 ZmEPF/EPFL proteins were identified in maize, which are mostly alkaline and a small portion acidic. Subcellular localization results showed that ZmEPF6, ZmEPF12, and ZmEPFL2 are localized in the nucleus and cytoplasm. Analysis of cis-acting elements revealed that members of the ZmEPF/EPFL family contain regulatory elements such as light response, anoxic, low temperature, and hormone response regulatory elements. RT-qPCR results showed that these family members are indeed responding to cold stress and hormone treatments. These results of this study provide a theoretical basis for improving the abiotic stress resistance of maize in future research.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Promoter Regions, Genetic
12.
Int Wound J ; 21(2): e14762, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356162

ABSTRACT

Ischemic ulcers pose a multifaceted clinical dilemma for patients with atherosclerosis, frequently compounded by suboptimal wound healing mechanisms. The dual function of Transforming Growth Factor Beta 3 (TGF-ß3) in ischemic ulcer healing is not fully comprehended, despite its involvement in modulating inflammatory responses and tissue regeneration. The main aim of this investigation was to clarify the functions and mechanisms by which TGF-ß3 regulates inflammatory responses and promotes wound healing in patients with ischemic ulcers who have atherosclerosis. Between August 2022 and November 2023, this cross-sectional investigation was conducted on 428 patients diagnosed with atherosclerotic ischemic ulcers in Haikou, China. The expression and function of TGF-ß3 were examined throughout the different stages of wound healing, including inflammation, proliferation and remodelling. In addition to documenting patient demographics and ulcer characteristics, an analysis was conducted on biopsy samples to determine the expression of TGF-ß3, pro-inflammatory and anti-inflammatory markers. A subset of patients were administered topical TGF-ß3 in order to evaluate its therapeutic effects. The expression pattern of TGF-ß3 was found to be stage-dependent and significant, exhibiting increased levels during the phase of inflammation and reduced activity in subsequent phases. TGF-ß3 levels were found to be greater in ulcers that were larger and deeper, especially in inflammatory phase. TGF-ß3 applied topically induced discernible enhancement in ulcer healing parameters, such as reduction in ulcer depth and size. The therapeutic significance of TGF-ß3 was emphasised due to its twofold function of regulating the inflammatory environment and facilitating the regeneration of damaged tissues. Ischemic ulcer lesion healing is significantly influenced by TGF-ß3, which functions as an anti-inflammatory and pro-inflammatory mediator. Its correlation with ulcer characteristics and stages of healing suggests that it may have utility as a targeted therapeutic agent.


Subject(s)
Atherosclerosis , Transforming Growth Factor beta3 , Humans , Anti-Inflammatory Agents , Cross-Sectional Studies , Inflammation , Transforming Growth Factor beta/analysis , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta3/therapeutic use , Transforming Growth Factor beta3/pharmacology , Ulcer , Wound Healing
13.
Pak J Med Sci ; 40(5): 820-828, 2024.
Article in English | MEDLINE | ID: mdl-38827874

ABSTRACT

Objective: To explore factors influencing the acceptance of allergen immunotherapy (AIT) for the treatment of allergic respiratory diseases by pediatric patients and their families. Methods: A total of 406 children (210 males and 196 females) attending the pediatric outpatient clinics and wards of the Renji Hospital, Shanghai Jiao Tong University School of Medicine from June 2020 to April 2022. Those who met the criteria for the AIT treatment, were included in the survey. An online 20-item questionnaire was developed. Data on patient's general characteristics, allergic disease status, family history of allergies, general family information, parental knowledge of allergic diseases, and whether the AIT treatment was recommended by a physician, were collected. The patients were divided into two groups according to their willingness to receive AIT: a reluctant or neutral group (n = 182), and a willing group (n = 224). A univariate analysis of the willingness to undergo AIT was done to detect parameters that significantly differed between the groups, and the identified factors were used as independent variables in the multifactorial logistic regression analysis. Results: The severity of allergic disease, presence of drug allergy, occurrence of severe allergic reactions, mother's education, distance from home to the hospital, parental knowledge of allergic diseases, and whether the doctor recommended AIT were all statistically different between the groups (p < 0.05). Multifactorial logistic regression analysis showed that the degree of allergic rhinitis (AR), or asthma (AS), parental knowledge of allergic diseases, and doctor's recommendation of AIT were the factors that influenced the willingness of pediatric patients to receive AIT. Conclusions: The severity of AR and AS, parental knowledge of allergic diseases, and doctor's recommendation influenced the willingness of pediatric patients to receive AIT.

14.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2230-2246, 2024 Apr.
Article in Zh | MEDLINE | ID: mdl-38812238

ABSTRACT

Total triterpenoids from the fruits of Chaenomeles speciosa(TCS) are active components in the prevention and treatment of gastric mucosal damage, which have potential anti-aging effects. However, it is still unclear whether TCS can improve gastric aging, especially its molecular mechanism against gastric aging. On this basis, this study explored the effect and mechanism of TCS on senescent GES-1 cells induced by D-galactose(D-gal) to provide scientific data for the clinical use of TCS to prevent gastric aging. GES-1 cells cultured in vitro and those transfected with overexpression GLS1(GLS1-OE) plasmid of glutaminase 1(GLS1) were induced to aging by D-gal, and then TCS and or GLS1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide(BPTES) were given. Cell survival rate, positive rate of ß-galactosidase(SA-ß-gal) staining, mitochondrial membrane potential(MMP), and apoptosis were investigated. GLS1 activity, levels of glutamine(Gln), glutamate(Glu), α-ketoglutarate(α-KG), urea, and ammonia in supernatant and cells were detected by enzyme-linked immunosorbent assay(ELISA) and colorimetric methods. The mRNA and protein expressions of GLS1 and the related genes of the mitochondrial apoptosis signaling pathway were measured by real-time fluorescence quantitative PCR and Western blot. The results manifested that compared with the D-gal model group and GLS1-OE D-gal model group, TCS significantly decreased the SA-ß-gal staining positive cell rate and MMP of D-gal-induced senescent GES-1 cells and GLS1-OE senescent GES-1 cells, inhibited the survival of senescent cells, and promoted their apoptosis(P<0.01). It decreased the activity of GLS1 and the content of Gln, Glu, α-KG, urea, and ammonia in supernatant and cell(P<0.01), reduced the concentration of cytochrome C(Cyto C) in mitochondria and the mRNA and protein expressions of GLS1 and proliferating nuclear antigen in cells(P<0.01). The mRNA expression of Bcl-2 and Bcl-xl, the protein expression of pro-caspase-9 and pro-caspase-3, and the ratio of Bcl-2/Bax and Bcl-xl/Bad in cells were decreased(P<0.01). Cyto C concentration in the cytoplasm, the mRNA expressions of Bax, Bad, apoptosis protease activating factor 1(Apaf-1), and protein expressions of cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 were increased(P<0.01). The aforementioned results indicate that TCS can counteract the senescent GES-1 cells induced by D-gal, and its mechanism may be closely related to suppressing the Gln/GLS1/α-KG metabolic axis, activating the mitochondrial apoptosis pathway, and thereby accelerating the apoptosis of the senescent cells and eliminating senescent cells.


Subject(s)
Apoptosis , Fruit , Galactose , Glutaminase , Glutamine , Mitochondria , Signal Transduction , Triterpenes , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , Humans , Signal Transduction/drug effects , Cell Line , Fruit/chemistry , Glutamine/pharmacology , Glutamine/metabolism , Glutaminase/metabolism , Glutaminase/genetics , Cellular Senescence/drug effects , Ketoglutaric Acids/pharmacology , Ketoglutaric Acids/metabolism
15.
Angew Chem Int Ed Engl ; 63(35): e202406427, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-38837308

ABSTRACT

Tuning the interfacial structure of metal oxide substrates is an essential strategy to induce electronic structure reconstruction of supported catalysts, which is of great importance in optimizing their catalytic activities. Herein, vanadium oxides-supported Ir catalysts (Ir-V2O3, Ir-VO2, and Ir-V2O5) with different interfacial bonding environments (Ir-V, Ir-Obri, and Ir-O, respectively) were investigated for hydrogen evolution reaction (HER). The regulating mechanism of the influence of different interfacial bonding environments on HER activity was investigated by both experimental results and computational evidence. Benefiting from the unique advantages of interfacial Ir-V direct metal bonds in Ir-V2O3, including enhanced electron transfer and electron donation ability, an optimized HER performance can be obtained with lowest overpotentials of 16 and 26 mV at 10 mA cm-2, high mass activities of 11.24 and 6.66 A mg-1, and turnover frequency values of 11.20 and 6.63 s-1, in acidic and alkaline conditions respectively. Furthermore, the assembled Ir-V2O3||RuO2 anion exchange membrane (AEM) electrolyzer requires only 1.92 V to achieve a high current density of 500 mA cm-2 and realizes long-term stability. This study provides essential insights into the regulating mechanism of interfacial chemical bonding in electrocatalysts and offers a new pathway to design noble metal catalysts for different applications.

16.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6740-6748, 2023 Dec.
Article in Zh | MEDLINE | ID: mdl-38212034

ABSTRACT

This study observed the effects of Guiqi Yiyuan Ointment(GQYY) on the left lung subjecting to bystander effect of right lung injury induced by ~(12)C~(6+) beam in rats and decipher the underlying mechanism from NOD-like receptor protein 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteinyl aspartate specific proteinase-1(caspase-1) pathway. Wistar rats were randomized into 7 groups: blank, model, inhibitor [200 mg·kg~(-1), N-acetylcysteine(NAC)], western drug [140 mg·kg~(-1) amifostine(AMI)], and high-, medium-, and low-dose(4.8, 2.4, and 1.2 g·kg~(-1), respectively) GQYY groups. The model of bystander effect damage was established by 4 Gy ~(12)C~(6+) beam irradiation of the right lung(with the other part shielded by a lead plate). The pathological changes in the lung tissue, the level of reactive oxygen species(ROS) in the lung tissue, and the levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum were observed and measured in each group. Furthermore, the mRNA and protein levels of NLRP3, ASC, caspase-1, and phosphorylated nuclear factor-κB p65(p-NF-κB p65)/nuclear factor-κB p65(NF-κB p65) were determined. Compared with the blank group, the model group showed thickened alveolar wall, narrowed alveolar cavity, and presence of massive red blood cells and inflammatory infiltration in the alveolar wall and alveolar cavity. In addition, the model group showed elevated ROS levels in both left and right lungs, elevated MDA level, lowered SOD level, and up-regulated mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. Compared with the model group, the drug administration in all the groups reduced inflammatory cell infiltration in the lung tissue. The inhibitor group and the western drug group showed enlarged alveolar cavity, thinned interstitium, and reduced inflammation. There was a small amount of alveolar wall rupture in the high-and medium-dose GQYY groups and reduced inflammatory cell infiltration in the low dose GQYY group. Compared with the model group, drug administration lowered level of ROS in the left and right lungs, lowered the MDA level, elevated the SOD level, and down-regulated the mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. GQYY can effectively reduce the damage caused by radiation and bystander effect, which may be associated with the ROS-mediated NLRP3 inflammasome activation.


Subject(s)
Lung Injury , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Inflammasomes/metabolism , Lung Injury/etiology , Lung Injury/genetics , Reactive Oxygen Species/metabolism , Bystander Effect , Ointments , Rats, Wistar , Lung/metabolism , Caspase 1/metabolism , RNA, Messenger , Superoxide Dismutase
17.
Sci Rep ; 14(1): 16470, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39014100

ABSTRACT

Rapid urbanization will cause various land use changes and the vast occupation of green spaces, a critical factor in the deterioration of biodiversity in urbanized areas. Some species of wildlife are endangered due to habitat shrunk and fragmentation. However, Malaysia's current biodiversity protection range is still limited. The Ecological Network (EN) refers to a framework of ecological components, which can be obtained by geographical and technical approaches to support more ecological diversity ranges. Furthermore, little research has been found on EN in Malaysia and the impact of land use change on EN. Therefore, the Selangor region is selected as the study area. This paper quantifies land use change and measures the extent of land use change to obtain the EN's change. The result has shown that forestland has decreased, explored by people for housing and agriculture from 2000 to 2020. The EN has a trend of fragmentation. Overall, this study's results imply that the land use change led to EN's worsened performance from 2000 to 2020 in the study area. This paper hopes that this research could help supply information on conserving biodiversity in future development and urban sustainable planning in Malaysia.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Urbanization , Malaysia , Humans , Agriculture/methods , Forests
18.
Orthop Surg ; 16(7): 1538-1547, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38784977

ABSTRACT

OBJECTIVE: Thoracolumbar compression fractures resulting from high-energy injuries are a common type of spinal fracture. Satisfying reduction of compressive vertebra body is essential for the clinical outcome. However, traditional distraction technique may lead to complications including pedicle screw loosening, pedicle screw breakage, and postoperative back pain because of excessive distraction. In this study, we reported a novel technique for reduction. Additionally, the effect and postoperative radiological parameters of this technique were compared with those of traditional distraction technique. METHODS: The clinical data of 80 patients who had been treated with posterior pedicle screw fixation from January 2019 to December 2020 was retrospectively analyzed. Thirty-six patients were performed with the leverage technique, while 22 patients were treated with the traditional distraction technique. When pedicle screw fixation was performed with either the leverage technique or the traditional distraction technique, fracture reduction was completed with monoaxial pedicle screws using either the leverage maneuver or distraction of adjacent vertebrae. Clinical evaluation, including operation time, hospital stay, blood loss volume, and postoperative complications were collected. The American Spinal Injury Association (ASIA) score for neurological condition and the visual analog scale (VAS) score for pain were used to evaluate the patients' functional outcome. The radiographic analysis included local kyphotic angle (LKA), regional kyphotic angle (RKA), anterior vertebral height (AVH), posterior vertebral height (PVH), and sagittal compression (SC). The student t-test and the χ2-test (or the Fisher exact test) were used to compare the outcome measures between the two groups. RESULTS: The leverage group comprised 36 patients, while 44 patients were included in the distraction group. No statistically significant differences were found in the demographic data. The VAS score in the leverage group (3.0 ± 0.8) was significantly lower than that in the distraction group (4.2 ± 0.6) on postoperative day 1. Total correction of the LKA in the leverage group (11.5 ± 2.5°) was significantly higher than that in the distraction group (7.1 ± 1.3°) (p = 0.0004). Total correction of the RKA was higher in the leverage group (12.1 ± 4.3°) than in the distraction group (6.1 ± 0.9°) (p = 0.005). The ratio of rear pillar /front pillar correction was 0.35 ± 0.13 and 0.89 ± 0.18 in the leverage and distraction groups, respectively (p = 0.014). Total correction of the upper and lower foraminal height in the leverage group was significantly less than that in the distraction group. The leverage group had significantly higher correction of the upper and lower intervertebral space height than the distraction group. CONCLUSIONS: Our novel leverage technique provided better kyphotic reduction and restoration than compared to conventional distraction technique in the surgical treatment of thoracolumbar compression fractures.


Subject(s)
Fracture Fixation, Internal , Fractures, Compression , Lumbar Vertebrae , Pedicle Screws , Spinal Fractures , Thoracic Vertebrae , Humans , Fractures, Compression/surgery , Fractures, Compression/diagnostic imaging , Thoracic Vertebrae/surgery , Thoracic Vertebrae/injuries , Thoracic Vertebrae/diagnostic imaging , Spinal Fractures/surgery , Spinal Fractures/diagnostic imaging , Male , Female , Lumbar Vertebrae/surgery , Lumbar Vertebrae/injuries , Lumbar Vertebrae/diagnostic imaging , Retrospective Studies , Middle Aged , Adult , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Aged
19.
Toxics ; 12(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38251028

ABSTRACT

In aquatic ecosystems, the interaction between heavy metals and dissolved organic carbon (DOC) plays a pivotal role in modifying the bioavailability of these metals. This study, employing a toxicokinetic-toxicodynamic model, delves into the interactive effects of humic acid (HA), a significant component of DOC, on the bioaccumulation and toxicity of copper (Cu) in the estuarine economic bivalve Sinonovacula constricta. Utilizing the stable isotope 65Cu as a tracer, we evaluated Cu uptake in S. constricta under varied DOC concentrations in a controlled laboratory setting. Our findings reveal that at DOC concentrations below 3.05 mg L-1, the bioavailability of Cu is reduced due to shifts in the speciation distribution of Cu, resulting in decreased bioaccumulation within S. constricta. Conversely, at DOC levels exceeding 3.05 mg L-1, the formation of colloidal Cu-HA complexes allows its entry into the bivalves' digestive system. Moreover, toxicity assays demonstrate an increase in S. constricta survival rates with higher DOC concentrations, suggesting a protective effect of DOC against Cu toxicity. The integration of accumulation and toxicity data infers that Cu-HA complexes, when ingested via the digestive tract, exhibit lower toxicity compared to Cu directly assimilated from the water phase. These findings emphasize the need to consider environmental DOC levels in assessing Cu pollution risks and provide insights for managing heavy metal toxicity in estuarine aquaculture.

20.
Math Biosci Eng ; 21(1): 494-522, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303432

ABSTRACT

To address the challenges of repetitive and low-texture features in intraoral endoscopic images, a novel methodology for stitching panoramic half jaw images of the oral cavity is proposed. Initially, an enhanced self-attention mechanism guided by Time-Weighting concepts is employed to augment the clustering potential of feature points, thereby increasing the number of matched features. Subsequently, a combination of the Sinkhorn algorithm and Random Sample Consensus (RANSAC) is utilized to maximize the count of matched feature pairs, accurately remove outliers and minimize error. Last, to address the unique spatial alignment among intraoral endoscopic images, a wavelet transform and weighted fusion algorithm based on dental arch arrangement in intraoral endoscopic images have been developed, specifically for use in the fusion stage of intraoral endoscopic images. This enables the local oral images to be precisely positioned along the dental arch, and seamless stitching is achieved through wavelet transformation and a gradual weighted fusion technique. Experimental results demonstrate that this method yields promising outcomes in panoramic stitching tasks for intraoral endoscopic images, achieving a matching accuracy of 84.6% and a recall rate of 78.4% in a dataset with an average overlap of 35%. A novel solution for panoramic stitching of intraoral endoscopic images is provided by this method.


Subject(s)
Dental Arch , Endoscopy , Algorithms , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL