Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Small ; 20(15): e2308312, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37992249

ABSTRACT

Flexible and stretchable electronics have attractive applications inaccessible to conventional rigid electronics. However, the mainstream transfer printing techniques have challenges for electronic films in terms of thickness and size and limitations for target substrates in terms of curvature, depth, and interfacial adhesion. Here a facile, damage-free, and contamination-free soap film transfer printing technique is reported that enables the wrinkle-free transfer of ultrathin electronic films, precise alignment in a transparent manner, and conformal and adhesion-independent printing onto various substrates, including those too topographically and adhesively challenging by existing methods. In principle, not only the pattern, resolution, and thickness of transferred films, but also the curvature, depth, and adhesion of target substrates are unlimited, while the size of transferred films can be as high as meter-scale. To demonstrate the capabilities of soap film transfer printing, pre-fabricated ultrathin electronics with multiple patterns, single micron resolution, sub-micron thickness, and centimeter size are conformably integrated onto the ultrathin web, ultra-soft cotton, DVD-R disk with the minimum radius of curvature of 131 nm, interior cavity of Klein bottle and dandelion with ultralow adhesion. The printed ultrathin sensors show superior conformabilities and robust adhesion, leading to engineering opportunities including electrocardiogram (ECG) signal acquisition and temperature measurement in aqueous environments.

2.
Angew Chem Int Ed Engl ; 62(11): e202216645, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36546885

ABSTRACT

Polymer electrolyte membrane water electrolysis (PEMWE) has been regarded as a promising technology for renewable hydrogen production. However, acidic oxygen evolution reaction (OER) catalysts with long-term stability impose a grand challenge in its large-scale industrialization. In this review, critical factors that may lead to catalyst's instability in couple with potential solutions are comprehensively discussed, including mechanical peeling, substrate corrosion, active-site over-oxidation/dissolution, reconstruction, oxide crystal structure collapse through the lattice oxygen-participated reaction pathway, etc. Last but not least, personal prospects are provided in terms of rigorous stability evaluation criteria, in situ/operando characterizations, economic feasibility and practical electrolyzer consideration, highlighting the ternary relationship of structure evolution, industrial-relevant activity and stability to serve as a roadmap towards the ultimate application of PEMWE.

3.
Langmuir ; 38(1): 352-362, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-34812042

ABSTRACT

Numerous studies have focused on designing micro/nanostructured surfaces to improve wicking capability for rapid liquid transport in many industrial applications. Although hierarchical surfaces have been demonstrated to enhance wicking capability, the underlying mechanism of liquid transport remains elusive. Here, we report the preferential capillary pumping on hollow hierarchical surfaces with internal nanostructures, which are different from the conventional solid hierarchical surfaces with external nanostructures. Specifically, capillary pumping preferentially occurs in the nanowire bundles instead of the interconnected V-groove on hollow hierarchical surfaces, observed by confocal laser scanning fluorescence microscopy. Theoretical analysis shows that capillary pumping capability is mainly dependent on the nanowire diameter and results in 15.5 times higher capillary climbing velocity in the nanowire bundles than that in the microscale V-groove. Driven by the Laplace pressure difference between nanowire bundles and V-grooves, the preferential capillary pumping is increased with the reduction of the nanowire diameter. Capillary pumping of the nanowire bundles provides a preferential path for rapid liquid flow, leading to 2 times higher wicking capability of the hollow hierarchical surface comparing with the conventional hierarchical surface. The unique mechanism of preferential capillary pumping revealed in this work paves the way for wicking enhancement and provides an insight into the design of wicking surfaces for high-performance capillary evaporation in a broad range of applications.

4.
Langmuir ; 38(33): 10192-10201, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35959936

ABSTRACT

For vapor condensation, the control of heterogeneous nucleation and spatial distribution of nuclei are crucial for regulating droplet dynamics and improving condensation efficiency. However, due to the complex characteristics of multicomponent, multiphase, and multiscale, the underlying mechanism of mixed vapor condensation remains unclear, especially at the nucleation stage. In this paper, we focus on the enrichment effects of non-uniform wettability surfaces by molecular dynamics simulation, which could intensify the droplet nucleation and growth processes in a water-air mixed system. The results clarify the inhibitory effect of non-condensable gas on droplet nucleation and prove that only 1% of non-condensable gas could reduce one half of the condensation performance from a molecular perspective. Furthermore, non-uniform surfaces are designed to promote the efficient enrichment of vapor molecules on nucleation sites, and the synergistic effect of hydrophilic and hydrophobic regions is proposed. In addition, the non-uniform wettability surfaces are characterized by varying the proportion and dispersion of hydrophilic regions. The results reveal that an optimal proportion of hydrophilic region (R = 5/6) could furnish the non-uniform surface with the best transfer performance. Moreover, the enhancement of condensation performance can also be achieved through the dispersed arrangement of hydrophilic regions. The results provide guidance for the optimized design of functionalized surfaces with enhanced mixed vapor condensation.

5.
Nano Lett ; 21(17): 7411-7418, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34176267

ABSTRACT

Water collection by dew condensation emerges as a sustainable solution to water scarcity. However, the transient condensation process that involves droplet nucleation, growth, and transport imposes conflicting requirements on surface properties. It is challenging to satisfy all benefits for different condensation stages simultaneously. By mimicking the structures and functions of moss Rhacocarpus, here, we report the attainment of dropwise condensation for efficient water collection even on a hydrophilic surface gated by a liquid suction mechanism. The Rhacocarpus-inspired porous surface (RIPS), which possesses a three-level wettability gradient, facilitates a rapid, directional, and persistent droplet suction. Such suction condensation enables a low nucleation barrier, frequent surface refreshing, and well-defined maximum droplet shedding radius simultaneously. Thus, a maximum ∼160% enhancement in water collection performance compared to the hydrophobic surface is achieved. Our work provides new insights and a design route for developing engineered materials for a wide range of water-harvesting and phase-change heat-transfer applications.


Subject(s)
Water , Hydrophobic and Hydrophilic Interactions , Suction , Surface Properties , Wettability
6.
Langmuir ; 37(5): 1779-1787, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33502854

ABSTRACT

The coalescence-induced droplet jumping on superhydrophobic surfaces is fundamentally significant from an academic or practical viewpoint. However, approaches to enhance droplet jumping velocity are very limited. In this work, the effect of structural parameters of the triangular prism on droplet jumping is studied systematically. The results indicate that droplet jumping velocity can be greatly increased by exploiting structure effects, which is a promising reinforcement method. When the height and apex angle of the triangular prism are fixed, the droplet jumping velocity increases with the length of the triangular prism until a plateau is reached. The ratio of translational kinetic energy to released surface energy during droplet jumping is determined by the apex angle and the height of the triangular prism, which is more effective with a smaller apex angle and a larger height. The results are supposed to provide guidelines for optimization of superhydrophobic surfaces.

7.
Langmuir ; 37(2): 774-784, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33382946

ABSTRACT

Controlling vapor nucleation on micro-/nanostructured surfaces is critical to achieving exciting droplet dynamics and condensation enhancement. However, the underlying mechanism of nucleation phenomena remains unclear because of its nature of nanoscale and transience, especially for the complex-structured surfaces. Manipulating vapor nucleation via the rational surface design of micro-/nanostructures is extremely challenging. Here, we fabricate hierarchical surfaces comprising tapered nanowire bunches and crisscross microgrooves. Nanosteps are formed around the top of the nanowire bunches, where the nanowires all around agglomerate densely because of surface tension. The theoretical analysis and molecular dynamics simulation show that nanostep morphologies that are around the top of the nanowire bunches can enable a lower energy barrier and a higher nucleation capability than those of the sparsely packed nanowires at the center and bottom of the nanowire bunches. Vapor condensation experiments demonstrate that the nucleation preferentially occurs around the top of the nanowire bunches. The results provide guidelines to design micro-/nanostructures for promoting vapor nucleation and droplet removal in condensation.

8.
Langmuir ; 37(40): 11931-11938, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34570495

ABSTRACT

Frost accretion occurs ubiquitously in various industrial applications and causes tremendous energy and economic loss, as manifested by the Texas power crisis that impacted millions of people over a vast area in 2021. To date, extensive efforts have been made on frost removal by micro-engineering surfaces with superhydrophobicity or lubricity. On such surfaces, air or oil cushions are introduced to suspend the frost layer and promote the rapid frost sliding off, which, although promising, faces the instability of the cushions under extreme frosting conditions. Most existing hydrophilic surfaces, characterized by large interfacial adhesion, have long been deemed unfavorable for frost shedding. Here, we demonstrated that a hydrophilic and slippery surface can achieve efficient defrosting. On such a surface, the hydrophilicity gave rise to a highly interconnected basal frost layer that boosted the substrate-to-frost heat transfer; then, the resulting melted frost readily slid off the surface due to the superb slipperiness. Notably, on our surface, the retained meltwater coverage after frost sliding off was only 2%. In comparison to two control surfaces, for example, surfaces lacking either hydrophilicity or slipperiness, the defrosting efficiency was 13 and 19 times higher and the energy consumption was 2.3 and 6.2 times lower, respectively. Our study highlights the use of a hydrophilic surface for the pronounced defrosting in a broad range of industrial applications.

9.
Langmuir ; 33(25): 6258-6268, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28562053

ABSTRACT

The coalescence-induced droplet jumping on superhydrophobic surfaces (SHSs) has attracted considerable attention over the past several years. Most of the studies on droplet jumping mainly focus on two-droplet coalescence events whereas the coalescence of three or more droplets is actually more frequent and still remains poorly understood. In this work, a 3D lattice Boltzmann simulation is carried out to investigate the effect of initial droplet arrangements on the coalescence-induced jumping of three equally sized droplets. Depending on the initial position of droplets on the surface, the droplet coalescence behaviors can be generally classified into two types: one is that all droplets coalesce together instantaneously (concentrated configuration), and the other is that the initial coalesced droplet sweeps up the third droplet in its moving path (spaced configuration). The critical Ohnesorge number, Oh, for the transition of inertial-capillary-dominated coalescence to inertially limited-viscous coalescence is found to be 0.10 for droplet coalescence on SHSs with a contact angle of 160°. The jumping droplet velocity for concentrated multidroplet coalescence at Oh ⩽ 0.10 still follows the inertial-capillary scaling with an increased prefactor, which indicates a viable jumping droplet velocity enhancement scheme. However, the droplet jumping velocity is drastically reduced for the spaced configuration compared to that for the aforementioned concentrated configuration. Because Oh exceeds 0.10, the effects of initial droplet arrangements on multidroplet jumping become weaker as viscosity plays a key role in the merging process. This work will provide effective guidelines for the design of functional SHSs with enhanced droplet jumping for a wide range of industrial applications.

10.
Langmuir ; 29(4): 1129-38, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23265312

ABSTRACT

Textured silicon surfaces decorated by square arrays of pillars with adjustable pitch were fabricated. The wetting behavior, especially for direction-dependent water contact angles on textured silicon surfaces after silanization, was investigated by incorporating the contact line fraction into a modified Wenzel model. Also, the effect of geometrical parameters on the anisotropic wetting behavior of water was examined with respect to water droplet impact on the textured surface. Moreover, the maximum spreading factor was studied theoretically in terms of energy conservation, allowing for surface topography and viscous friction of the liquid flowing among the arrays of the posts. Theoretical models were found to be in good agreement with experimental data.

11.
Brain Res ; 1798: 148163, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36379314

ABSTRACT

Electrical stimulation (ES) or electroconductive scaffold has been proved to have the positive effects on the behavior of neural stem cells (NSCs). We previously developed a novel three-dimensional conductive composite scaffold of poly (3, 4-ethylenedioxythiophen)/chitosan/gelatin (PEDOT/Cs/Gel) for neural tissue engineering. In the present study, we further studied the effect of three-dimensional conductive scaffolds combined with ES on the neuronal differentiation of NSCs. The sandwiched ES device was designed to apply single-phase pulse voltage on NSCs cultured in conductive scaffold for 7 days (4 h/day). Proliferation and differentiation related proteins and genes were analyzed by immunofluorescence staining and RT-qPCR. The role of voltage-gated ion channels (VGICs) in regulating NSCs' neuronal differentiation by ES was investigated in presence of ion channels blockers. The results of protein and gene expression indicated that ES not only promoted the proliferation of NSCs cultured in the conductive scaffold, but also enhanced the differentiation of NSCs into neurons. Especially, the voltage-gated calcium channel (Cav2+) played an important role in the neuronal differentiation of NSCs under ES. Our findings demonstrated that ES combined with three-dimensional conductive scaffolds would be a promising strategy to regulate the neuronal differentiation of NSCs for neural regeneration.


Subject(s)
Neural Stem Cells , Tissue Scaffolds , Neural Stem Cells/metabolism , Tissue Engineering , Cell Differentiation/physiology , Electric Stimulation , Calcium Channels/metabolism
12.
ACS Nano ; 17(3): 2813-2828, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36719858

ABSTRACT

The penetration behavior of nanoparticles in mucous depends on physicochemical properties of the nanoparticles and the mucus microenvironment, due to particle-mucin interactions and the presence of the mucin mesh space filtration effect. To date, it is still unclear how the surface properties of nanoparticles influence their mucus penetration behaviors in various physiological and pathophysiological conditions. In this study, we have prepared a comprehensive library of amine-, carboxyl-, and PEG-modified silica nanoparticles (SNPs) with controlled surface ligand densities. Using multiple particle tracking, we have studied the mechanism responsible for the mucus penetration behaviors of these SNPs. It was found that PEG- and amine-modified SNPs exhibited pH-independent immobilization under iso-density conditions, while carboxyl-modified SNPs exhibited enhanced movement only in weakly alkaline mucus. Biophysical characterizations demonstrated that amine- and carboxyl-modified SNPs were trapped in mucus due to electrostatic interactions and hydrogen bonding with mucin. In contrast, high-density PEGylated surface formed a brush conformation that shields particle-mucin interactions. We have further investigated the surface property-dependent mucus penetration behavior using a murine airway distribution model. This study provides insights for designing efficient transmucosal nanocarriers for prevention and treatment of pulmonary diseases.


Subject(s)
Nanoparticles , Animals , Mice , Nanoparticles/chemistry , Surface Properties , Mucins/analysis , Mucins/chemistry , Mucins/pharmacology , Mucus/chemistry , Hydrogen-Ion Concentration
13.
Sci Rep ; 13(1): 22708, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38123614

ABSTRACT

The rice-turtle coculture system is the most special rice-fish integrated farming system. In this study, we selected four paddy fields, including a rice monoculture paddy and three rice-turtle paddies with different planting years, to investigate the soil bacterial community composition with Illumina MiSeq sequencing technology. The results indicated that the contents of soil available nitrogen (AN), soil available phosphorus (AP) and soil organic matter (OM) in 9th year of rice-turtle paddy (RT9) were increased by 5.40%, 51.11% and 23.33% compared with rice monoculture paddy (CK), respectively. Significant differences of Acidobacteria, Desulfobacteria, Crenarchaeota were observed among the different rice farming systems. The relative abundance of Methylomonadaceae, Methylococcaceae and Methylophilaceae in RT9 was significantly higher than that in other treatments. RT9 had significantly lower relative abundance of Acidobacteria, but significantly higher relative abundance of Proteobacteria than other treatments. Redundancy analysis showed that soil AN and AP contents were the major factors influencing the abundance of the dominant microbes, wherein Methylomonadaceae, Methylococcaceae and Methylophilaceae were positively correlated with OM. The findings revealed the rice-turtle coculture system in the 9th year had higher soil nutrients and soil bacterial diversity, but there was also a risk of increasing methane emissions.


Subject(s)
Methylococcaceae , Oryza , Turtles , Animals , Soil , Oryza/microbiology , Coculture Techniques , Soil Microbiology , Agriculture , Bacteria/genetics , Acidobacteria/genetics , Nitrogen
14.
iScience ; 25(6): 104456, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35874920

ABSTRACT

The freezing-induced aggregation of aluminum-based (Alum) adjuvants has been considered as the most important cause of reduced vaccine potency. However, the intrinsic properties that determine the functionality of Alum after freezing have not been elucidated. In this study, we used engineered aluminum oxyhydroxide nanoparticles (AlOOH NPs) and demonstrated that cryogenic freezing led to the mechanical pressure-mediated reduction of surface hydroxyl. The sugar-based surfactant, octyl glucoside (OG), was demonstrated to shield AlOOH NPs from the freezing-induced loss of hydroxyl content and the aggregation through the reduction of recrystallization-induced mechanical stress. As a result, the antigenic adsorption property of frozen AlOOH NPs could be effectively protected. When hepatitis B surface antigen (HBsAg) was adjuvanted with OG-protected frozen AlOOH NPs in mice, the loss of immunogenicity was inhibited. These findings provide insights into the freezing-induced surface decomposition of Alum and can be translated to design of protectants to improve the stability of vaccines.

15.
iScience ; 24(6): 102531, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34113838

ABSTRACT

Evaporation, boiling, and condensation are fundamental liquid-vapor phase-change heat transfer processes and have been utilized in many conventional and emerging energy systems. Recent advances in the manipulation of interface wetting and heterogeneous nucleation using micro/nano-structured surfaces have enabled exciting two-phase flow dynamics and heat transfer enhancement. However, independently manipulating droplets, bubbles, or liquid films through surface modification has encountered bottlenecks. In this Perspective, we discuss an emerging strategy where droplets/bubbles are coupled with a liquid film to control fluid dynamics for minimizing the thermal resistance between the liquid-vapor interface and solid substrate, thus significantly enhancing the heat transfer performance beyond the state of the art.

16.
ACS Omega ; 6(43): 28912-28922, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34746583

ABSTRACT

In the process of industrial crystallization, it is always difficult to balance the secondary nucleation rate and metastable zone width (MSZW). Herein, we report an experimental and numerical study for the cooling crystallization of paracetamol in an oscillatory flow crystallizer (OFC), finding the optimal operating conditions for balancing the secondary nucleation rate and MSZW. The results show that the MSZW decreases with the increase of oscillation Reynolds number (Re o). Compared to the traditional stirring system, the OFC has an MSZW three times larger than that of the stirring system under a similar power density of consumption. With the numerical simulation, the OFC can produce a stable space environment and instantaneous strong disturbance, which is conducive to the crystallization process. Above all, a high Re o is favorable to produce a sufficient nucleation rate, which may inevitably constrict the MSZW to a certain degree. Then, the optimization strategy of the operating parameter (Re o) in the OFC is proposed.

17.
Carbohydr Polym ; 252: 117210, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33183643

ABSTRACT

In this study, protocatechuic acid (PCA) was grafted onto carboxymethyl chitosan (CMCS) via EDC/NHS to improve the antioxidant effect. The grafting ratio of PCA-g-CMCS conjugates could be controlled by adjusting the pH value and feed ratio of raw materials. The conjugates exhibited similar pH sensitivity to CMCS and showed dramatic enhancements of DPPH and ABTS radicals scavenging activities, total antioxidant capacity, reducing power, and Fe2+-chelating activity. Three-dimensional porous PCA-g-CMCS hydrogel was prepared by lyophilization and secondary cross-linking. The shaped hydrogel preserved its antioxidant activity, and the sustained release of PCA-containing degraded fragment from biodegradable hydrogel could be achieved with the aid of lysozyme in vitro (15 days). PCA-g-CMCS hydrogel also showed excellent biocompatibility and protective effect on H2O2-induced oxidative damage in SH-SY5Y cells. These results suggested that PCA-g-CMCS conjugates and its hydrogel would appear to be a promising oxidation-resistant material for applications such as drug release and tissue engineering.


Subject(s)
Antioxidants , Biocompatible Materials/chemistry , Chitosan/analogs & derivatives , Hydrogels/chemistry , Hydroxybenzoates/chemistry , Neuroprotective Agents , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Line , Chitosan/chemistry , Humans , Mechanical Phenomena , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidation-Reduction/drug effects
18.
Front Vet Sci ; 8: 804241, 2021.
Article in English | MEDLINE | ID: mdl-35146014

ABSTRACT

Oxidative stress (OS) is one of the main limiting factors affecting the length of lactation and milk quality in dairy cows. For high-producing dairy cows, the OS of mammary glands is a serious problem. Green tea polyphenols (GTP), found mainly in tea, are a combination of many phenols. GTP have a good effect on antioxidation, inflammation resistance, obesity, fat cell metabolism improvement, and lowering of blood lipid. Therefore, we studied the role of GTP on OS in dairy cows and further investigated whether GTP alleviates oxidative damage of bovine mammary epithelial cells (BMECs) induced by hydrogen peroxide (H2O2) and its underlying molecular mechanism. In this study, 500 µM of H2O2 for 12 h incubation was chosen as the condition of the OS model of BMECs. In addition, the present results found that treatment with GTP alleviated the oxidative damage induced by H2O2 [the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) were significantly increased, and the contents of malondialdehyde (MDA), 8-isoprostaglandin (8-iso-PG), 8-oxo-deoxyguanosine (8-OHdG), and protein carbonyl (PC) and caspase-3 and caspase-9 activities were significantly reduced]. These effects are related to the activation of the erythrocyte-derived nuclear factor 2-like protein 2 (NFE2L2) signaling pathway and the inactivation of the caspase/Bcl-2 apoptotic pathway. When NFE2L2 short interfering RNA (siRNA) was used to downregulate the expression of NFE2L2 in cultured BMECs, NFE2L2-siRNA transfection abolished the protective effect of GTP on H2O2-induced intracellular reactive oxygen species (ROS) accumulation and apoptosis. In addition, the mitogen-activated protein kinase (MAPK) inhibition test further proved that GTP relieved H2O2-induced oxidative damage by activating the NFE2L2 signaling pathway, which was achieved by activating the extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway. Overall, the results indicate that GTP has a beneficial effect on the redox balance of BMECs. In addition, GTP might be a latent antioxidant in vivo, which can be administered to ruminants during stressful periods such as the perinatal period.

19.
Sci Bull (Beijing) ; 66(18): 1877-1884, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-36654397

ABSTRACT

Condensation is critical for a wide range of applications such as electrical power generation, distillation, natural gas processing, dehumidification and water harvest, and thermal management. Compared with "filmwise" mode of condensation (FWC) prevailing in industrial-scale systems, dropwise condensation (DWC) can provide an order of magnitude higher heat transfer rate owing to drastically reduced thermal resistance from the formation of discrete and mobile droplets. In the past, promoting DWC by controlling surface wetting has attracted wide attention, but DWC highly relies on non-wetting surfaces and only lasts days under practical conditions due to the poor reliability of coatings. Here, we developed nanostructured graphene coatings on nickel (Ni) substrates that we can control and enhance the nucleation of water droplets on graphene grain boundaries. Surprisingly, this enables DWC even under normal "wetting" conditions. This is contradictory to the widely accepted DWC mechanism. Moreover, the Ni-graphene surface enables exceptional long-term condensation from days to more than 3 years under practical or even more aggressive testing environments.

20.
Langmuir ; 26(7): 4831-8, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20151667

ABSTRACT

We have fabricated a series of textured silicon surfaces decorated by square arrays of pillars whose radius and pitch can be adjusted independently. These surfaces possessed a hydrophobic/superhydrophobic property after silanization. The dynamic behavior of water droplets impacting these structured surfaces was examined using a high-speed camera. Experimental results validated that the remaining liquid film on the pillars' tops gave rise to a wet surface instead of a dry surface as the water droplet began to recede away from the textured surfaces. Also, experimental results demonstrated that the difference in the contact time was subjected to the solid fraction referred to as the ratio of the actual area contacting with the liquid to its projected area on the textured surface. Because the mechanism by which the residual liquid film emerges on the pillars' tops can essentially be ascribed to the pinch-off of the liquid threads, we further addressed the changes in the contact time in terms of the characteristic time of pinch-off of an imaginary liquid cylinder whose radius is related to the solid fraction and the maximum contact area. The match of the theoretical analysis and the experimental results substantiates the assumption aforementioned.

SELECTION OF CITATIONS
SEARCH DETAIL