Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Immunity ; 56(7): 1649-1663.e5, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37236188

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.


Subject(s)
HIV Infections , Hematopoietic Stem Cell Transplantation , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Macaca fascicularis , Viral Load
2.
PLoS Pathog ; 20(8): e1012496, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39173097

ABSTRACT

Persistence of the rebound-competent viral reservoir (RCVR) within the CD4+ T cell compartment of people living with HIV remains a major barrier to HIV cure. Here, we determined the effects of the pan-lymphocyte-depleting monoclonal antibody (mAb) alemtuzumab on the RCVR in SIVmac239-infected rhesus macaques (RM) receiving antiretroviral therapy (ART). Alemtuzumab administered during chronic ART or at the time of ART initiation induced >95% depletion of circulating CD4+ T cells in peripheral blood and substantial CD4+ T cell depletion in lymph nodes. However, treatment was followed by proliferation and reconstitution of CD4+ T cells in blood, and despite ongoing ART, levels of cell-associated SIV DNA in blood and lymphoid tissues were not substantially different between alemtuzumab-treated and control RM after immune cell reconstitution, irrespective of the time of alemtuzumab treatment. Upon ART cessation, 19 of 22 alemtuzumab-treated RM and 13 of 13 controls rebounded in <28 days with no difference in the time to rebound between treatment groups. Time to rebound and reactivation rate was associated with plasma viral loads (pVLs) at time of ART initiation, suggesting lymphocyte depletion had no durable impact on the RCVR. However, 3 alemtuzumab-treated RM that had lowest levels of pre-ART viremia, failed to rebound after ART withdrawal, in contrast to controls with similar levels of SIV replication. These observations suggest that alemtuzumab therapy has little to no ability to reduce well-established RCVRs but may facilitate RCVR destabilization when pre-ART virus levels are particularly low.

4.
PLoS Pathog ; 17(5): e1009565, 2021 05.
Article in English | MEDLINE | ID: mdl-33970966

ABSTRACT

Here, we assessed the efficacy of a short-course multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common macaque endemic pathogens (EPs) and evaluated its impact on gastrointestinal (GI) microbiota, mucosal integrity, and local and systemic inflammation in sixteen clinically healthy macaques. Treatment combined with expanded practices resulted in successful maintenance of rhesus macaques (RM) free of common EPs, with no evidence of overt microbiota diversity loss or dysbiosis and instead resulted in a more defined luminal microbiota across study subjects. Creation of a GI pathogen free (GPF) status resulted in improved colonic mucosal barrier function (histologically, reduced colonic MPO+, and reduced pan-bacterial 16s rRNA in the MLN), reduced local and systemic innate and adaptive inflammation with reduction of colonic Mx1 and pSTAT1, decreased intermediate (CD14+CD16+) and non-classical monocytes (CD14-CD16+), reduced populations of peripheral dendritic cells, Ki-67+ and CD38+ CD4+ T cells, Ki-67+IgG+, and Ki-67+IgD+ B cells indicating lower levels of background inflammation in the distal descending colon, draining mesenteric lymph nodes, and systemically in peripheral blood, spleen, and axillary lymph nodes. A more controlled rate of viral acquisition resulted when untreated and treated macaques were challenged by low dose intrarectal SIVmac239x, with an ~100 fold increase in dose required to infect 50% (AID50) of the animals receiving treatment compared to untreated controls. Reduction in and increased consistency of number of transmitted founder variants resulting from challenge seen in the proof of concept study directly correlated with post-treatment GPF animal's improved barrier function and reduction of key target cell populations (Ki-67+ CD4+T cells) at the site of viral acquisition in the follow up study. These data demonstrate that a therapeutic and operational strategy can successfully eliminate varying background levels of EPs and their associated aberrant immunomodulatory effects within a captive macaque cohort, leading to a more consistent, better defined and reproducible research model.


Subject(s)
Inflammation/therapy , Microbiota/drug effects , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Immunodeficiency Virus/immunology , Adaptive Immunity , Animals , B-Lymphocytes , CD4-Positive T-Lymphocytes , Cell Proliferation , Combined Modality Therapy , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Humans , Immunity, Innate , Intestinal Mucosa , Lymph Nodes , Macaca mulatta , Male , Monocytes , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology
5.
PLoS Pathog ; 14(7): e1007130, 2018 07.
Article in English | MEDLINE | ID: mdl-30001436

ABSTRACT

Human gammaherpesviruses are associated with malignancies in HIV infected individuals; in macaques used in non-human primate models of HIV infection, gammaherpesvirus infections also occur. Limited data on prevalence and tumorigenicity of macaque gammaherpesviruses, mostly cross-sectional analyses of small series, are available. We comprehensively examine all three-rhesus macaque gammaherpesviruses -Rhesus rhadinovirus (RRV), Rhesus Lymphocryptovirus (RLCV) and Retroperitoneal Fibromatosis Herpesvirus (RFHV) in macaques experimentally infected with Simian Immunodeficiency Virus or Simian Human Immunodeficiency Virus (SIV/SHIV) in studies spanning 15 years at the AIDS and Cancer Virus Program of the Frederick National Laboratory for Cancer Research. We evaluated 18 animals with malignancies (16 lymphomas, one fibrosarcoma and one carcinoma) and 32 controls. We developed real time quantitative PCR assays for each gammaherpesvirus DNA viral load (VL) in malignant and non-tumor tissues; we also characterized the tumors using immunohistochemistry and in situ hybridization. Furthermore, we retrospectively quantified gammaherpesvirus DNA VL and SIV/SHIV RNA VL in longitudinally-collected PBMCs and plasma, respectively. One or more gammaherpesviruses were detected in 17 tumors; generally, one was predominant, and the relevant DNA VL in the tumor was very high compared to surrounding tissues. RLCV was predominant in tumors resembling diffuse large B cell lymphomas; in a Burkitt-like lymphoma, RRV was predominant; and in the fibrosarcoma, RFHV was predominant. Median RRV and RLCV PBMC DNA VL were significantly higher in cases than controls; SIV/SHIV VL and RLCV VL were independently associated with cancer. Local regressions showed that longitudinal VL patterns in cases and controls, from SIV infection to necropsy, differed for each gammaherpesvirus: while RFHV VL increased only slightly in all animals, RLCV and RRV VL increased significantly and continued to increase steeply in cases; in controls, VL flattened. In conclusion, the data suggest that gammaherpesviruses may play a significant role in tumorogenesis in macaques infected with immunodeficiency viruses.


Subject(s)
Coinfection/complications , Herpesviridae Infections/complications , Neoplasms/virology , Simian Acquired Immunodeficiency Syndrome/complications , Tumor Virus Infections/complications , Animals , Gammaherpesvirinae , Macaca mulatta , Simian Immunodeficiency Virus
6.
Xenotransplantation ; 27(4): e12578, 2020 07.
Article in English | MEDLINE | ID: mdl-31930750

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) and xenotransplantation are accompanied by viral reactivations and virus-associated complications resulting from immune deficiency. Here, in a Mauritian cynomolgus macaque model of fully MHC-matched allogeneic HSCT, we report reactivations of cynomolgus polyomavirus, lymphocryptovirus, and cytomegalovirus, macaque viruses analogous to HSCT-associated human counterparts BK virus, Epstein-Barr virus, and human cytomegalovirus. Viral replication in recipient macaques resulted in characteristic disease manifestations observed in HSCT patients, such as polyomavirus-associated hemorrhagic cystitis and tubulointerstitial nephritis or lymphocryptovirus-associated post-transplant lymphoproliferative disorder. However, in most cases, the reconstituted immune system, alone or in combination with short-term pharmacological intervention, exerted control over viral replication, suggesting engraftment of functional donor-derived immunity. Indeed, the donor-derived reconstituted immune systems of two long-term engrafted HSCT recipient macaques responded to live attenuated yellow fever 17D vaccine (YFV 17D) indistinguishably from untransplanted controls, mounting 17D-targeted neutralizing antibody responses and clearing YFV 17D within 14 days. Together, these data demonstrate that this macaque model of allogeneic HSCT recapitulates clinical situations of opportunistic viral infections in transplant patients and provides a pre-clinical model to test novel prophylactic and therapeutic modalities.


Subject(s)
Disease Models, Animal , Hematopoietic Stem Cell Transplantation , Opportunistic Infections , Virus Diseases , Allografts , Animals , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Macaca fascicularis , Opportunistic Infections/virology
7.
Am J Primatol ; 82(1): e23081, 2020 01.
Article in English | MEDLINE | ID: mdl-31916274

ABSTRACT

Pair housing is one of the most important components of behavioral management for caged macaques; however, it can result in aggression and injury if partners are incompatible. Knowing when to proceed and when to stop social introductions can be challenging, and can have consequences for the partners. We examined whether behavior early in social introductions predicted success (i.e., partners remained cohoused with full contact for at least 28 days) in 724 female-female and 477 male-male rhesus macaque pairs. We took cage side one-zero focal observations on pairs during the first 2 days of full contact, recording social and aggressive behaviors. The majority of pairs (79.6% of female and 83.0% of male) were successful. The most common behaviors exhibited by pairs during these observations were maintaining proximity, tandem threats, and anxiety. Mounting was also relatively common in male pairs. Grooming and close social contact (e.g., touching) were not common in our study. Several behaviors observed on Day 1 significantly predicted pairing success. For females, these included proximity, tandem threat, rump present, mount, and groom. Day 1 predictors of success for male pairs included proximity, tandem threat, rump present, mount, and social contact. Fewer behaviors predicted success on Day 2. Maintaining proximity on Day 2 predicted success for both sexes, but tandem threat predicted success only for females. Behaviors that predicted incompatibility for females on Day 1 included displace, grimace, threat, bite, and other aggressive contacts. Day 1 predictors of separation for male pairs were displaced, grimace, and abnormal behavior. The only Day 2 behavior that correlated with incompatibility was grimace, which was predictive for males. Interestingly, aggression did not predict incompatibility for male pairs. Identifying behaviors exhibited by monkeys early in the pair introduction that are predictive of long-term compatibility can shape pairing decisions, reducing later stress and potential injury.


Subject(s)
Animal Husbandry/methods , Macaca mulatta , Social Behavior , Aggression , Animals , Behavior, Animal , Female , Housing, Animal , Male
9.
PLoS Pathog ; 13(3): e1006219, 2017 03.
Article in English | MEDLINE | ID: mdl-28278237

ABSTRACT

Zika virus (ZIKV), an emerging flavivirus, has recently spread explosively through the Western hemisphere. In addition to symptoms including fever, rash, arthralgia, and conjunctivitis, ZIKV infection of pregnant women can cause microcephaly and other developmental abnormalities in the fetus. We report herein the results of ZIKV infection of adult rhesus macaques. Following subcutaneous infection, animals developed transient plasma viremia and viruria from 1-7 days post infection (dpi) that was accompanied by the development of a rash, fever and conjunctivitis. Animals produced a robust adaptive immune response to ZIKV, although systemic cytokine response was minimal. At 7 dpi, virus was detected in peripheral nervous tissue, multiple lymphoid tissues, joints, and the uterus of the necropsied animals. Notably, viral RNA persisted in neuronal, lymphoid and joint/muscle tissues and the male and female reproductive tissues through 28 to 35 dpi. The tropism and persistence of ZIKV in the peripheral nerves and reproductive tract may provide a mechanism of subsequent neuropathogenesis and sexual transmission.


Subject(s)
Zika Virus Infection/pathology , Zika Virus Infection/virology , Animals , Cell Separation , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , In Situ Hybridization , Macaca mulatta , Male , Neutralization Tests , Polymerase Chain Reaction , Viremia/virology , Zika Virus
10.
Antimicrob Agents Chemother ; 60(3): 1560-72, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26711758

ABSTRACT

Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4(+) T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy.


Subject(s)
Depsipeptides/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Macaca mulatta/virology , RNA, Viral/blood , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/drug effects , Viral Load/drug effects , Acetylation , Animals , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/metabolism , Depsipeptides/pharmacokinetics , Histone Deacetylase Inhibitors/pharmacokinetics , Histones/metabolism , Viremia/drug therapy , Virus Activation/drug effects
11.
Antimicrob Agents Chemother ; 58(11): 6790-806, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25182644

ABSTRACT

Nonhuman primate models are needed for evaluations of proposed strategies targeting residual virus that persists in HIV-1-infected individuals receiving suppressive combination antiretroviral therapy (cART). However, relevant nonhuman primate (NHP) models of cART-mediated suppression have proven challenging to develop. We used a novel three-class, six-drug cART regimen to achieve durable 4.0- to 5.5-log reductions in plasma viremia levels and declines in cell-associated viral RNA and DNA in blood and tissues of simian immunodeficiency virus SIVmac239-infected Indian-origin rhesus macaques, then evaluated the impact of treatment with the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA; Vorinostat) on the residual virus pool. Ex vivo SAHA treatment of CD4(+) T cells obtained from cART-suppressed animals increased histone acetylation and viral RNA levels in culture supernatants. cART-suppressed animals each received 84 total doses of oral SAHA. We observed SAHA dose-dependent increases in acetylated histones with evidence for sustained modulation as well as refractoriness following prolonged administration. In vivo virologic activity was demonstrated based on the ratio of viral RNA to viral DNA in peripheral blood mononuclear cells, a presumptive measure of viral transcription, which significantly increased in SAHA-treated animals. However, residual virus was readily detected at the end of treatment, suggesting that SAHA alone may be insufficient for viral eradication in the setting of suppressive cART. The effects observed were similar to emerging data for repeat-dose SAHA treatment of HIV-infected individuals on cART, demonstrating the feasibility, utility, and relevance of NHP models of cART-mediated suppression for in vivo assessments of AIDS virus functional cure/eradication approaches.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/drug effects , Acetylation/drug effects , Animals , CD4-Positive T-Lymphocytes/drug effects , Disease Models, Animal , Drug Therapy, Combination , Histones/metabolism , Macaca mulatta , RNA, Viral/blood , RNA, Viral/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load/drug effects , Vorinostat
12.
J Infect Dis ; 207(6): 880-92, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23087435

ABSTRACT

BACKGROUND: Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections induce robust, generalized inflammatory responses that begin during acute infection and lead to pathological systemic immune activation, fibrotic damage of lymphoid tissues, and CD4⁺ T-cell loss, pathogenic processes that contribute to disease progression. METHODS: To better understand the contribution of tumor necrosis factor (TNF), a key regulator of acute inflammation, to lentiviral pathogenesis, rhesus macaques newly infected with SIVmac239 were treated for 12 weeks in a pilot study with adalimumab (Humira), a human anti-TNF monoclonal antibody. RESULTS: Adalimumab did not affect plasma SIV RNA levels or measures of T-cell immune activation (CD38 or Ki67) in peripheral blood or lymph node T cells. However, compared with untreated rhesus macaques, adalimumab-treated rhesus macaques showed attenuated expression of proinflammatory genes, decreased infiltration of polymorphonuclear cells into the T-cell zone of lymphoid tissues, and weaker antiinflammatory regulatory responses to SIV infection (ie, fewer presumed alternatively activated [ie, CD163⁺] macrophages, interleukin 10-producing cells, and transforming growth factor ß-producing cells), along with reduced lymphoid tissue fibrosis and better preservation of CD4⁺ T cells. CONCLUSIONS: While HIV/SIV replication drives pathogenesis, these data emphasize the contribution of the inflammatory response to lentiviral infection to overall pathogenesis, and they suggest that early modulation of the inflammatory response may help attenuate disease progression.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Inflammation/metabolism , Lymph Nodes/pathology , Lymphocyte Activation/drug effects , Retroviruses, Simian , Simian Acquired Immunodeficiency Syndrome/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Adalimumab , Animals , CD4 Lymphocyte Count , Cell Movement/drug effects , Cytokines/genetics , Cytokines/metabolism , Fibrosis , Gene Expression Regulation/drug effects , Inflammation/genetics , Lymph Nodes/immunology , Macaca mulatta , Macrophages/drug effects , Macrophages/physiology , Male , RNA, Viral/metabolism , Random Allocation , Simian Acquired Immunodeficiency Syndrome/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/physiology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Viral Load/drug effects
13.
J Virol ; 86(6): 3152-66, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22238316

ABSTRACT

Although xenotropic murine leukemia virus-related virus (XMRV) has been previously linked to prostate cancer and myalgic encephalomyelitis/chronic fatigue syndrome, recent data indicate that results interpreted as evidence of human XMRV infection reflect laboratory contamination rather than authentic in vivo infection. Nevertheless, XMRV is a retrovirus of undefined pathogenic potential that is able to replicate in human cells. Here we describe a comprehensive analysis of two male pigtailed macaques (Macaca nemestrina) experimentally infected with XMRV. Following intravenous inoculation with >10(10) RNA copy equivalents of XMRV, viral replication was limited and transient, peaking at ≤2,200 viral RNA (vRNA) copies/ml plasma and becoming undetectable by 4 weeks postinfection, though viral DNA (vDNA) in peripheral blood mononuclear cells remained detectable through 119 days of follow-up. Similarly, vRNA was not detectable in lymph nodes by in situ hybridization despite detectable vDNA. Sequencing of cell-associated vDNA revealed extensive G-to-A hypermutation, suggestive of APOBEC-mediated viral restriction. Consistent with limited viral replication, we found transient upregulation of type I interferon responses that returned to baseline by 2 weeks postinfection, no detectable cellular immune responses, and limited or no spread to prostate tissue. Antibody responses, including neutralizing antibodies, however, were detectable by 2 weeks postinfection and maintained throughout the study. Both animals were healthy for the duration of follow-up. These findings indicate that XMRV replication and spread were limited in pigtailed macaques, predominantly by APOBEC-mediated hypermutation. Given that human APOBEC proteins restrict XMRV infection in vitro, human XMRV infection, if it occurred, would be expected to be characterized by similarly limited viral replication and spread.


Subject(s)
Disease Models, Animal , Macaca nemestrina , Retroviridae Infections/virology , Virus Replication , Xenotropic murine leukemia virus-related virus/physiology , Animals , Antibodies, Viral/immunology , Humans , Male , Phylogeny , Retroviridae Infections/immunology , Xenotropic murine leukemia virus-related virus/classification , Xenotropic murine leukemia virus-related virus/genetics
14.
Blood ; 117(18): 4787-95, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21385847

ABSTRACT

IL-15 uses the heterotrimeric receptor IL-2/IL-15Rß and the γ chain shared with IL-2 and the cytokine-specific IL-15Rα. Although IL-15 shares actions with IL-2 that include activation of natural killer (NK) and CD8 T cells, IL-15 is not associated with capillary leak syndrome, activation-induced cell death, or with a major effect on the number of functional regulatory T cells. To prepare for human trials to determine whether IL-15 is superior to IL-2 in cancer therapy, recombinant human IL-15 (rhIL-15) was produced under current good manufacturing practices. A safety study in rhesus macaques was performed in 4 groups of 6 animals each that received vehicle diluent control or rhIL-15 at 10, 20, or 50 µg/kg/d IV for 12 days. The major toxicity was grade 3/4 transient neutropenia. Bone marrow examinations demonstrated increased marrow cellularity, including cells of the neutrophil series. Furthermore, neutrophils were observed in sinusoids of enlarged livers and spleens, suggesting that IL-15 mediated neutrophil redistribution from the circulation to tissues. The observation that IL-15 administration was associated with increased numbers of circulating NK and CD8 central and effector-memory T cells, in conjunction with efficacy studies in murine tumor models, supports the use of multiple daily infusions of rhIL-15 in patients with metastatic malignancies.


Subject(s)
Interleukin-15/toxicity , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Blood Coagulation/drug effects , Bone Marrow/drug effects , Bone Marrow/pathology , Humans , Immunotherapy , Infusions, Intravenous , Interleukin-15/administration & dosage , Interleukin-15/immunology , Interleukin-15/pharmacokinetics , Liver/drug effects , Liver/pathology , Macaca mulatta , Neoplasms/immunology , Neoplasms/therapy , Neutropenia/blood , Neutropenia/chemically induced , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/toxicity
15.
PLoS One ; 15(1): e0227676, 2020.
Article in English | MEDLINE | ID: mdl-31935257

ABSTRACT

Zika virus infection during pregnancy is associated with miscarriage and with a broad spectrum of fetal and neonatal developmental abnormalities collectively known as congenital Zika syndrome (CZS). Symptomology of CZS includes malformations of the brain and skull, neurodevelopmental delay, seizures, joint contractures, hearing loss and visual impairment. Previous studies of Zika virus in pregnant rhesus macaques (Macaca mulatta) have described injury to the developing fetus and pregnancy loss, but neonatal outcomes following fetal Zika virus exposure have yet to be characterized in nonhuman primates. Herein we describe the presentation of rhesus macaque neonates with a spectrum of clinical outcomes, including one infant with CZS-like symptoms including cardiomyopathy, motor delay and seizure activity following maternal infection with Zika virus during the first trimester of pregnancy. Further characterization of this neonatal nonhuman primate model of gestational Zika virus infection will provide opportunities to evaluate the efficacy of pre- and postnatal therapeutics for gestational Zika virus infection and CZS.


Subject(s)
Disease Models, Animal , Zika Virus Infection/veterinary , Zika Virus/pathogenicity , Animals , Cardiomyopathies/virology , Female , Fetus/virology , Macaca mulatta , Microcephaly/virology , Pregnancy , Pregnancy Complications, Infectious/veterinary , Pregnancy Complications, Infectious/virology , Pregnancy Trimester, First , Seizures/virology , Zika Virus Infection/virology
16.
Nat Commun ; 9(1): 263, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343712

ABSTRACT

Zika virus (ZIKV) infection during pregnancy leads to an increased risk of fetal growth restriction and fetal central nervous system malformations, which are outcomes broadly referred to as the Congenital Zika Syndrome (CZS). Here we infect pregnant rhesus macaques and investigate the impact of persistent ZIKV infection on uteroplacental pathology, blood flow, and fetal growth and development. Despite seemingly normal fetal growth and persistent fetal-placenta-maternal infection, advanced non-invasive in vivo imaging studies reveal dramatic effects on placental oxygen reserve accompanied by significantly decreased oxygen permeability of the placental villi. The observation of abnormal oxygen transport within the placenta appears to be a consequence of uterine vasculitis and placental villous damage in ZIKV cases. In addition, we demonstrate a robust maternal-placental-fetal inflammatory response following ZIKV infection. This animal model reveals a potential relationship between ZIKV infection and uteroplacental pathology that appears to affect oxygen delivery to the fetus during development.


Subject(s)
Placenta/metabolism , Placental Circulation , Pregnancy Complications, Infectious/immunology , Zika Virus Infection/immunology , Adaptive Immunity , Animals , Brain/embryology , Brain/pathology , Cytokines/blood , Disease Models, Animal , Female , Fetal Development , Fetus/pathology , Immunity, Innate , Macaca mulatta , Magnetic Resonance Imaging , Oxygen/metabolism , Permeability , Placenta/immunology , Placenta/pathology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/physiopathology , Viral Load , Zika Virus Infection/metabolism , Zika Virus Infection/pathology , Zika Virus Infection/physiopathology
17.
Nat Med ; 24(8): 1104-1107, 2018 08.
Article in English | MEDLINE | ID: mdl-29967348

ABSTRACT

Zika virus (ZIKV) infection is associated with congenital defects and pregnancy loss. Here, we found that 26% of nonhuman primates infected with Asian/American ZIKV in early gestation experienced fetal demise later in pregnancy despite showing few clinical signs of infection. Pregnancy loss due to asymptomatic ZIKV infection may therefore be a common but under-recognized adverse outcome related to maternal ZIKV infection.


Subject(s)
Abortion, Spontaneous/virology , Stillbirth/veterinary , Zika Virus Infection/veterinary , Zika Virus/physiology , Animals , Female , Kaplan-Meier Estimate , Male , Pregnancy , Primates
18.
Comp Med ; 67(6): 537-540, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29212587

ABSTRACT

Inguinal herniation of abdominal viscera is a relatively common condition in both humans and domestic animal species. In captive rhesus macaques (Macaca mulatta), the highest incidence occurs in overweight, aged males. However, inguinal herniation of the uterus with bilateral adnexa is extremely rare in both human and veterinary medicine. Here we report a previously undescribed uterine inguinal herniation with bilateral adnexa in a 3-y-old female rhesus macaque. Although uterine herniation remains a rare condition in rhesus macaques, it should be considered as a differential diagnosis in animals with unilateral subcutaneous enlargements in the inguinal region.


Subject(s)
Hernia, Inguinal/veterinary , Herniorrhaphy/veterinary , Macaca mulatta , Monkey Diseases/pathology , Adnexa Uteri/pathology , Adnexa Uteri/surgery , Animals , Female , Hernia, Inguinal/pathology , Hernia, Inguinal/surgery , Herniorrhaphy/methods , Monkey Diseases/surgery , Ultrasonography/veterinary , Uterus/diagnostic imaging , Uterus/pathology , Uterus/surgery
19.
Nat Commun ; 8(1): 1418, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127275

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) is a critically important therapy for hematological malignancies, inborn errors of metabolism, and immunodeficiency disorders, yet complications such as graft-vs.-host disease (GvHD) limit survival. Development of anti-GvHD therapies that do not adversely affect susceptibility to infection or graft-vs.-tumor immunity are hampered by the lack of a physiologically relevant, preclinical model of allogeneic HSCT. Here we show a spectrum of diverse clinical HSCT outcomes including primary and secondary graft failure, lethal GvHD, and stable, disease-free full donor engraftment using reduced intensity conditioning and mobilized peripheral blood HSCT in unrelated, fully MHC-matched Mauritian-origin cynomolgus macaques. Anti-GvHD prophylaxis of tacrolimus, post-transplant cyclophosphamide, and CD28 blockade induces multi-lineage, full donor chimerism and recipient-specific tolerance while maintaining pathogen-specific immunity. These results establish a new preclinical allogeneic HSCT model for evaluation of GvHD prophylaxis and next-generation HSCT-mediated therapies for solid organ tolerance, cure of non-malignant hematological disease, and HIV reservoir clearance.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Macaca fascicularis/immunology , Major Histocompatibility Complex , Animals , Female , Graft vs Host Disease/prevention & control , Histocompatibility Testing , Humans , Macaca fascicularis/genetics , Male , Models, Animal , Species Specificity , Transplantation Chimera/genetics , Transplantation Chimera/immunology , Transplantation Tolerance/genetics , Transplantation Tolerance/immunology , Transplantation, Homologous , Treatment Outcome
20.
Comp Med ; 66(6): 489-493, 2016 12 01.
Article in English | MEDLINE | ID: mdl-28304253

ABSTRACT

A 6-d-old Indian-origin female rhesus macaque (Macaca mulatta) presented with bradycardia shortly after sedation with ketamine. No other cardiac abnormalities were apparent. Approximately 2 wk after the initial presentation, the macaque was again bradycardic and exhibited a regularly irregular arrhythmia on a prestudy examination. ECG, echocardiography, blood pressure measurement, SpO2 assessment, and a CBC analysis were performed. The echocardiogram and bloodwork were normal, but the infant was hypotensive at the time of echocardiogram. The ECG revealed ventricular parasystole. Ventricular parasystole is considered a benign arrhythmia caused by an ectopic pacemaker that is insulated from impulses from the sinus node. Given this abnormality, the macaque was transferred to a short-term study protocol, according to veterinary recommendation. On the final veterinary exam, a grade 3 systolic murmur and a decrease in arrhythmia frequency were noted. Gross cardiac lesions were not identified at necropsy the following day. Cardiac tissue sections were essentially normal on microscopic examination. This infant did not display signs of cardiovascular insufficiency, and a review of the medical record indicated normal growth, feed intake and activity levels. This case demonstrates the importance of appropriate screening of potential neonatal and juvenile research candidates for occult cardiovascular abnormalities. Whether the arrhythmia diagnosed in this case was truly innocuous is unclear, given the documented hypotension and the development of a systolic heart murmur.


Subject(s)
Heart Ventricles/pathology , Macaca mulatta , Parasystole/veterinary , Animals , Animals, Laboratory , Bradycardia/veterinary , Echocardiography/veterinary , Female , Heart Ventricles/abnormalities , Heart Ventricles/diagnostic imaging , Humans , Monkey Diseases/pathology , Parasystole/pathology
SELECTION OF CITATIONS
SEARCH DETAIL