ABSTRACT
Successful colonization of the host requires Mycobacterium tuberculosis (Mtb) to sense and respond coordinately to disparate environmental cues during infection and adapt its physiology. However, how Mtb response to environmental cues and the availability of key carbon sources may be integrated is poorly understood. Here, by exploiting a reporter-based genetic screen, we have unexpectedly found that overexpression of transcription factors involved in Mtb lipid metabolism altered the dampening effect of low environmental potassium concentrations ([K+]) on the pH response of Mtb. Cholesterol is a major carbon source for Mtb during infection, and transcriptional analyses revealed that Mtb response to acidic pH was augmented in the presence of cholesterol and vice versa. Strikingly, deletion of the putative lipid regulator mce3R had little effect on Mtb transcriptional response to acidic pH or cholesterol individually, but resulted specifically in loss of cholesterol response augmentation in the simultaneous presence of acidic pH. Similarly, while mce3R deletion had little effect on Mtb response to low environmental [K+] alone, augmentation of the low [K+] response by the simultaneous presence of cholesterol was lost in the mutant. Finally, a mce3R deletion mutant was attenuated for growth in foamy macrophages and for colonization in a murine infection model that recapitulates caseous necrotic lesions and the presence of foamy macrophages. These findings reveal the critical coordination between Mtb response to environmental cues and cholesterol, a vital carbon source, and establishes Mce3R as a transcription factor that crucially serves to integrate these signals.
Subject(s)
Mycobacterium tuberculosis , Animals , Mice , Mycobacterium tuberculosis/genetics , Lipid Metabolism/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cholesterol/genetics , Cholesterol/metabolism , Carbon/metabolism , Hydrogen-Ion Concentration , Potassium/metabolismABSTRACT
Sensing and response to environmental cues, such as pH and chloride (Cl-), is critical in enabling Mycobacterium tuberculosis (Mtb) colonization of its host. Utilizing a fluorescent reporter Mtb strain in a chemical screen, we have identified compounds that dysregulate Mtb response to high Cl- levels, with a subset of the hits also inhibiting Mtb growth in host macrophages. Structure-activity relationship studies on the hit compound "C6," or 2-(4-((2-(ethylthio)pyrimidin-5-yl)methyl)piperazin-1-yl)benzo[d]oxazole, demonstrated a correlation between compound perturbation of Mtb Cl- response and inhibition of bacterial growth in macrophages. C6 accumulated in both bacterial and host cells, and inhibited Mtb growth in cholesterol media, but not in rich media. Subsequent examination of the Cl- response of Mtb revealed an intriguing link with bacterial growth in cholesterol, with increased transcription of several Cl--responsive genes in the simultaneous presence of cholesterol and high external Cl- concentration, versus transcript levels observed during exposure to high external Cl- concentration alone. Strikingly, oral administration of C6 was able to inhibit Mtb growth in vivo in a C3HeB/FeJ murine infection model. Our work illustrates how Mtb response to environmental cues can intersect with its metabolism and be exploited in antitubercular drug discovery.
Subject(s)
Antitubercular Agents/pharmacology , Drug Development , Mycobacterium tuberculosis/drug effects , Animals , Antitubercular Agents/chemistry , Chlorides/metabolism , Cholesterol/metabolism , Humans , Hydrogen-Ion Concentration , Macrophages/microbiology , Mice , Microbial Sensitivity Tests , Mycobacterium tuberculosis/growth & development , Structure-Activity RelationshipABSTRACT
For Mycobacterium tuberculosis (Mtb) to successfully infect a host, it must be able to adapt to changes in its microenvironment, including variations in ionic signals such as pH and chloride (Cl- ), and link these responses to its growth. Transcriptional changes are a key mechanism for Mtb environmental adaptation, and we identify here Rv0500A as a novel transcriptional regulator that links Mtb environmental response and division processes. Global transcriptional profiling revealed that Rv0500A acts as a repressor and influences the expression of genes related to division, with the magnitude of its effect modulated by pH and Cl- . Rv0500A can directly bind the promoters of several of these target genes, and we identify key residues required for its DNA-binding ability and biological effect. Overexpression of rv0500A disrupted Mtb growth morphology, resulting in filamentation that was exacerbated by high environmental Cl- levels and acidic pH. Finally, we show that perturbation of rv0500A leads to attenuation of the ability of Mtb to colonize its host in vivo. Our work highlights the important link between Mtb environmental response and growth characteristics, and uncovers a new transcription factor involved in this critical facet of Mtb biology.
Subject(s)
Mycobacterium tuberculosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/genetics , Mycobacterium tuberculosis/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolismABSTRACT
Successful host colonization by bacteria requires sensing and response to the local ionic milieu, and coordination of responses with the maintenance of ionic homeostasis in the face of changing conditions. We previously discovered that Mycobacterium tuberculosis (Mtb) responds synergistically to chloride (Cl-) and pH, as cues to the immune status of its host. This raised the intriguing concept of abundant ions as important environmental signals, and we have now uncovered potassium (K+) as an ion that can significantly impact colonization by Mtb. The bacterium has a unique transcriptional response to changes in environmental K+ levels, with both distinct and shared regulatory mechanisms controlling Mtb response to the ionic signals of K+, Cl-, and pH. We demonstrate that intraphagosomal K+ levels increase during macrophage phagosome maturation, and find using a novel fluorescent K+-responsive reporter Mtb strain that K+ is not limiting during macrophage infection. Disruption of Mtb K+ homeostasis by deletion of the Trk K+ uptake system results in dampening of the bacterial response to pH and Cl-, and attenuation in host colonization, both in primary murine bone marrow-derived macrophages and in vivo in a murine model of Mtb infection. Our study reveals how bacterial ionic homeostasis can impact environmental ionic responses, and highlights the important role that abundant ions can play during host colonization by Mtb.
Subject(s)
Mycobacterium tuberculosis/metabolism , Potassium/metabolism , Adaptation, Biological/physiology , Animals , Bacterial Proteins/metabolism , Homeostasis , Host Microbial Interactions/physiology , Host-Pathogen Interactions , Ions/metabolism , Macrophages , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/pathogenicity , Phagosomes , Potassium/physiologyABSTRACT
How bacterial response to environmental cues and nutritional sources may be integrated in enabling host colonization is poorly understood. Exploiting a reporter-based screen, we discovered that overexpression of Mycobacterium tuberculosis (Mtb) lipid utilization regulators altered Mtb acidic pH response dampening by low environmental potassium (K+). Transcriptional analyses unveiled amplification of Mtb response to acidic pH in the presence of cholesterol, a major carbon source for Mtb during infection, and vice versa. Strikingly, deletion of the putative lipid regulator mce3R resulted in loss of augmentation of (i) cholesterol response at acidic pH, and (ii) low [K+] response by cholesterol, with minimal effect on Mtb response to each signal individually. Finally, the ∆mce3R mutant was attenuated for colonization in a murine model that recapitulates lesions with lipid-rich foamy macrophages. These findings reveal critical coordination between bacterial response to environmental and nutritional cues, and establish Mce3R as a crucial integrator of this process.
ABSTRACT
The pathogenesis of Mycobacterium tuberculosis (Mtb) is intrinsically linked to its intimate and enduring interaction with its host, and understanding Mtb-host interactions at a molecular level is critical to attempts to decrease the significant burden of tuberculosis disease. The marked heterogeneity that exists in lesion progression and outcome during Mtb infection necessitates the development of methods that enable in situ analyses of Mtb biology and host response within the spatial context of tissue structure. Fluorescent reporter Mtb strains have thus come to the forefront as an approach with broad utility for the study of the Mtb-host interface, enabling visualization of the bacteria during infection, and contributing to the discovery of several facets such as non-uniformity in microenvironments and Mtb physiology in vivo, and their relation to the host immune response or therapeutic intervention. We review here the different types of fluorescent reporters and ways in which they have been utilized in Mtb studies, and expand on how they may further be exploited in combination with novel imaging and other methodologies to illuminate key aspects of Mtb-host interactions.