Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nucleic Acids Res ; 51(D1): D1539-D1548, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36370099

ABSTRACT

Mass spectrometry (MS) is by far the most used experimental approach in high-throughput proteomics. The ProteomeXchange (PX) consortium of proteomics resources (http://www.proteomexchange.org) was originally set up to standardize data submission and dissemination of public MS proteomics data. It is now 10 years since the initial data workflow was implemented. In this manuscript, we describe the main developments in PX since the previous update manuscript in Nucleic Acids Research was published in 2020. The six members of the Consortium are PRIDE, PeptideAtlas (including PASSEL), MassIVE, jPOST, iProX and Panorama Public. We report the current data submission statistics, showcasing that the number of datasets submitted to PX resources has continued to increase every year. As of June 2022, more than 34 233 datasets had been submitted to PX resources, and from those, 20 062 (58.6%) just in the last three years. We also report the development of the Universal Spectrum Identifiers and the improvements in capturing the experimental metadata annotations. In parallel, we highlight that data re-use activities of public datasets continue to increase, enabling connections between PX resources and other popular bioinformatics resources, novel research and also new data resources. Finally, we summarise the current state-of-the-art in data management practices for sensitive human (clinical) proteomics data.


Subject(s)
Proteomics , Software , Humans , Databases, Protein , Mass Spectrometry , Proteomics/methods , Computational Biology/methods
2.
Anal Chem ; 96(19): 7373-7379, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696819

ABSTRACT

Cross-linking mass spectrometry (XL-MS) has evolved into a pivotal technique for probing protein interactions. This study describes the implementation of Parallel Accumulation-Serial Fragmentation (PASEF) on timsTOF instruments, enhancing the detection and analysis of protein interactions by XL-MS. Addressing the challenges in XL-MS, such as the interpretation of complex spectra, low abundant cross-linked peptides, and a data acquisition bias, our current study integrates a peptide-centric approach for the analysis of XL-MS data and presents the foundation for integrating data-independent acquisition (DIA) in XL-MS with a vendor-neutral and open-source platform. A novel workflow is described for processing data-dependent acquisition (DDA) of PASEF-derived information. For this, software by Bruker Daltonics is used, enabling the conversion of these data into a format that is compatible with MeroX and Skyline software tools. Our approach significantly improves the identification of cross-linked products from complex mixtures, allowing the XL-MS community to overcome current analytical limitations.


Subject(s)
Cross-Linking Reagents , Mass Spectrometry , Software , Workflow , Cross-Linking Reagents/chemistry , Peptides/chemistry , Peptides/analysis , Humans
3.
J Proteome Res ; 22(2): 311-322, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36165806

ABSTRACT

In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software. The computational pipeline of TurnoveR performs critical steps to determine protein turnover rates, including isotopologue demultiplexing, precursor-pool correction, statistical analysis, and generation of data reports and visualizations. This workflow is compatible with many mass spectrometric platforms and recapitulates turnover rates and differential changes in turnover rates between treatment groups calculated in previous studies. We expect that the addition of TurnoveR to the widely used Skyline proteomics software will facilitate wider utilization of protein turnover analysis in highly relevant biological models, including aging, neurodegeneration, and skeletal muscle atrophy.


Subject(s)
Proteomics , Software , Proteomics/methods , Proteolysis , Mass Spectrometry/methods , Workflow , Isotope Labeling/methods
4.
J Proteome Res ; 22(5): 1466-1482, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37018319

ABSTRACT

The MSstats R-Bioconductor family of packages is widely used for statistical analyses of quantitative bottom-up mass spectrometry-based proteomic experiments to detect differentially abundant proteins. It is applicable to a variety of experimental designs and data acquisition strategies and is compatible with many data processing tools used to identify and quantify spectral features. In the face of ever-increasing complexities of experiments and data processing strategies, the core package of the family, with the same name MSstats, has undergone a series of substantial updates. Its new version MSstats v4.0 improves the usability, versatility, and accuracy of statistical methodology, and the usage of computational resources. New converters integrate the output of upstream processing tools directly with MSstats, requiring less manual work by the user. The package's statistical models have been updated to a more robust workflow. Finally, MSstats' code has been substantially refactored to improve memory use and computation speed. Here we detail these updates, highlighting methodological differences between the new and old versions. An empirical comparison of MSstats v4.0 to its previous implementations, as well as to the packages MSqRob and DEqMS, on controlled mixtures and biological experiments demonstrated a stronger performance and better usability of MSstats v4.0 as compared to existing methods.


Subject(s)
Proteomics , Research Design , Proteomics/methods , Software , Mass Spectrometry/methods , Chromatography, Liquid/methods
5.
J Proteome Res ; 22(10): 3290-3300, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37683181

ABSTRACT

We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data-independent acquisition, the Thermo Scientific Orbitrap Astral mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific Orbitrap mass spectrometers, which have long been the gold standard for high-resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high-quality quantitative measurements across a wide dynamic range. We also use a newly developed extracellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5000 plasma proteins in a 60 min gradient with the Orbitrap Astral mass spectrometer.


Subject(s)
Peptides , Proteomics , Proteomics/methods , Mass Spectrometry/methods , Proteome/metabolism , Blood Proteins
6.
Nat Methods ; 17(12): 1237-1244, 2020 12.
Article in English | MEDLINE | ID: mdl-33199889

ABSTRACT

Several challenges remain in data-independent acquisition (DIA) data analysis, such as to confidently identify peptides, define integration boundaries, remove interferences, and control false discovery rates. In practice, a visual inspection of the signals is still required, which is impractical with large datasets. We present Avant-garde as a tool to refine DIA (and parallel reaction monitoring) data. Avant-garde uses a novel data-driven scoring strategy: signals are refined by learning from the dataset itself, using all measurements in all samples to achieve the best optimization. We evaluate the performance of Avant-garde using benchmark DIA datasets and show that it can determine the quantitative suitability of a peptide peak, and reach the same levels of selectivity, accuracy, and reproducibility as manual validation. Avant-garde is complementary to existing DIA analysis engines and aims to establish a strong foundation for subsequent analysis of quantitative mass spectrometry data.


Subject(s)
Data Analysis , Data Curation/methods , Data Science/methods , Proteome/analysis , Proteomics/methods , Cell Line , HEK293 Cells , Humans , Mass Spectrometry/methods , Peptides/analysis , Reproducibility of Results , Software
7.
J Proteome Res ; 21(1): 289-294, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34919405

ABSTRACT

Skyline Batch is a newly developed Windows forms application that enables the easy and consistent reprocessing of data with Skyline. Skyline has made previous advances in this direction; however, none enable seamless automated reprocessing of local and remote files. Skyline keeps a log of all of the steps that were taken in the document; however, reproducing these steps takes time and allows room for human error. Skyline also has a command-line interface, enabling it to be run from a batch script, but using the program in this way requires expertise in editing these scripts. By formalizing the workflow of a highly used set of batch scripts into an intuitive and powerful user interface, Skyline Batch can reprocess data stored in remote repositories just by opening and running a Skyline Batch configuration file. When run, a Skyline Batch configuration downloads all necessary remote files and then runs a four-step Skyline workflow. By condensing the steps needed to reprocess the data into one file, Skyline Batch gives researchers the opportunity to publish their processing along with their data and other analysis files. These easily run configuration files will greatly increase the transparency and reproducibility of published work. Skyline Batch is freely available at https://skyline.ms/batch.url.


Subject(s)
Software , User-Computer Interface , Humans , Reproducibility of Results , Workflow
8.
J Proteome Res ; 21(1): 232-242, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34874736

ABSTRACT

The implication of lipid dysregulation in diseases, toxic exposure outcomes, and inflammation has brought great interest to lipidomic studies. However, lipids have proven to be analytically challenging due to their highly isomeric nature and vast concentration ranges in biological matrices. Therefore, multidimensional techniques such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (LC-IMS-CID-MS) have been implemented to separate lipid isomers as well as provide structural information and increased identification confidence. These data sets are however extremely large and complex, resulting in challenges for data processing and annotation. Here, we have overcome these challenges by developing sample-specific multidimensional lipid libraries using the freely available software Skyline. Specifically, the human plasma library developed for this work contains over 500 unique lipids and is combined with adapted Skyline functions such as indexed retention time (iRT) for retention time prediction and IMS drift time filtering for enhanced selectivity. For comparison with other studies, this database was used to annotate LC-IMS-CID-MS data from a NIST SRM 1950 extract. The same workflow was then utilized to assess plasma and bronchoalveolar lavage fluid (BALF) samples from patients with varying degrees of smoke inhalation injury to identify lipid-based patient prognostic and diagnostic markers.


Subject(s)
Lipidomics , Smoke Inhalation Injury , Chromatography, Liquid , Humans , Ion Mobility Spectrometry , Lipids
9.
Mol Cell Proteomics ; 19(6): 944-959, 2020 06.
Article in English | MEDLINE | ID: mdl-32234965

ABSTRACT

In bottom-up mass spectrometry-based proteomics, relative protein quantification is often achieved with data-dependent acquisition (DDA), data-independent acquisition (DIA), or selected reaction monitoring (SRM). These workflows quantify proteins by summarizing the abundances of all the spectral features of the protein (e.g. precursor ions, transitions or fragments) in a single value per protein per run. When abundances of some features are inconsistent with the overall protein profile (for technological reasons such as interferences, or for biological reasons such as post-translational modifications), the protein-level summaries and the downstream conclusions are undermined. We propose a statistical approach that automatically detects spectral features with such inconsistent patterns. The detected features can be separately investigated, and if necessary, removed from the data set. We evaluated the proposed approach on a series of benchmark-controlled mixtures and biological investigations with DDA, DIA and SRM data acquisitions. The results demonstrated that it could facilitate and complement manual curation of the data. Moreover, it can improve the estimation accuracy, sensitivity and specificity of detecting differentially abundant proteins, and reproducibility of conclusions across different data processing tools. The approach is implemented as an option in the open-source R-based software MSstats.


Subject(s)
Mass Spectrometry/methods , Proteins/analysis , Proteomics/methods , Databases, Protein , Protein Processing, Post-Translational , Reproducibility of Results , Sensitivity and Specificity , Software
10.
Nucleic Acids Res ; 48(D1): D1145-D1152, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31686107

ABSTRACT

The ProteomeXchange (PX) consortium of proteomics resources (http://www.proteomexchange.org) has standardized data submission and dissemination of mass spectrometry proteomics data worldwide since 2012. In this paper, we describe the main developments since the previous update manuscript was published in Nucleic Acids Research in 2017. Since then, in addition to the four PX existing members at the time (PRIDE, PeptideAtlas including the PASSEL resource, MassIVE and jPOST), two new resources have joined PX: iProX (China) and Panorama Public (USA). We first describe the updated submission guidelines, now expanded to include six members. Next, with current data submission statistics, we demonstrate that the proteomics field is now actively embracing public open data policies. At the end of June 2019, more than 14 100 datasets had been submitted to PX resources since 2012, and from those, more than 9 500 in just the last three years. In parallel, an unprecedented increase of data re-use activities in the field, including 'big data' approaches, is enabling novel research and new data resources. At last, we also outline some of our future plans for the coming years.


Subject(s)
Computational Biology/methods , Databases, Protein , Proteomics/methods , Big Data , Data Mining , Software , Software Design , Web Browser
12.
Bioinformatics ; 36(15): 4366-4368, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32467974

ABSTRACT

SUMMARY: Skyline is a Windows application for targeted mass spectrometry method creation and quantitative data analysis. Like most graphical user interface (GUI) tools, it has a complex user interface with many ways for users to edit their files which makes the task of logging user actions challenging and is the reason why audit logging of every change is not common in GUI tools. We present an object comparison-based approach to audit logging for Skyline that is extensible to other GUI tools. The new audit logging system keeps track of all document modifications made through the GUI or the command line and displays them in an interactive grid. The audit log can also be uploaded and viewed in Panorama, a web repository for Skyline documents that can be configured to only accept documents with a valid audit log, based on embedded hashes to protect log integrity. This makes workflows involving Skyline and Panorama more reproducible. AVAILABILITY AND IMPLEMENTATION: Skyline is freely available at https://skyline.ms. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Mass Spectrometry , Workflow
13.
Mass Spectrom Rev ; 39(3): 229-244, 2020 05.
Article in English | MEDLINE | ID: mdl-28691345

ABSTRACT

Skyline is a freely available, open-source Windows client application for accelerating targeted proteomics experimentation, with an emphasis on the proteomics and mass spectrometry community as users and as contributors. This review covers the informatics encompassed by the Skyline ecosystem, from computationally assisted targeted mass spectrometry method development, to raw acquisition file data processing, and quantitative analysis and results sharing.


Subject(s)
Mass Spectrometry/methods , Proteins/chemistry , Proteomics/methods , Animals , Humans , Software
14.
J Proteome Res ; 19(4): 1447-1458, 2020 04 03.
Article in English | MEDLINE | ID: mdl-31984744

ABSTRACT

Vendor-independent software tools for quantification of small molecules and metabolites are lacking, especially for targeted analysis workflows. Skyline is a freely available, open-source software tool for targeted quantitative mass spectrometry method development and data processing with a 10 year history supporting six major instrument vendors. Designed initially for proteomics analysis, we describe the expansion of Skyline to data for small molecule analysis, including selected reaction monitoring, high-resolution mass spectrometry, and calibrated quantification. This fundamental expansion of Skyline from a peptide-sequence-centric tool to a molecule-centric tool makes it agnostic to the source of the molecule while retaining Skyline features critical for workflows in both peptide and more general biomolecular research. The data visualization and interrogation features already available in Skyline, such as peak picking, chromatographic alignment, and transition selection, have been adapted to support small molecule data, including metabolomics. Herein, we explain the conceptual workflow for small molecule analysis using Skyline, demonstrate Skyline performance benchmarked against a comparable instrument vendor software tool, and present additional real-world applications. Further, we include step-by-step instructions on using Skyline for small molecule quantitative method development and data analysis on data acquired with a variety of mass spectrometers from multiple instrument vendors.


Subject(s)
Metabolomics , Proteomics , Amino Acid Sequence , Mass Spectrometry , Software
15.
Nat Methods ; 14(9): 921-927, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28825704

ABSTRACT

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the main method for high-throughput identification and quantification of peptides and inferred proteins. Within this field, data-independent acquisition (DIA) combined with peptide-centric scoring, as exemplified by the technique SWATH-MS, has emerged as a scalable method to achieve deep and consistent proteome coverage across large-scale data sets. We demonstrate that statistical concepts developed for discovery proteomics based on spectrum-centric scoring can be adapted to large-scale DIA experiments that have been analyzed with peptide-centric scoring strategies, and we provide guidance on their application. We show that optimal tradeoffs between sensitivity and specificity require careful considerations of the relationship between proteins in the samples and proteins represented in the spectral library. We propose the application of a global analyte constraint to prevent the accumulation of false positives across large-scale data sets. Furthermore, to increase the quality and reproducibility of published proteomic results, well-established confidence criteria should be reported for the detected peptide queries, peptides and inferred proteins.


Subject(s)
Data Interpretation, Statistical , High-Throughput Screening Assays/methods , Mass Spectrometry/methods , Peptide Mapping/methods , Proteins/chemistry , Sequence Analysis, Protein/methods , Computer Simulation , Models, Statistical , Proteins/analysis , Reproducibility of Results , Sensitivity and Specificity
16.
Mol Cell Proteomics ; 17(6): 1239-1244, 2018 06.
Article in English | MEDLINE | ID: mdl-29487113

ABSTRACT

To address the growing need for a centralized, community resource of published results processed with Skyline, and to provide reviewers and readers immediate visual access to the data behind published conclusions, we present Panorama Public (https://panoramaweb.org/public.url), a repository of Skyline documents supporting published results. Panorama Public is built on Panorama, an open source data management system for mass spectrometry data processed with the Skyline targeted mass spectrometry environment. The Panorama web application facilitates viewing, sharing, and disseminating results contained in Skyline documents via a web-browser. Skyline users can easily upload their documents to a Panorama server and allow other researchers to explore uploaded results in the Panorama web-interface through a variety of familiar summary graphs as well as annotated views of the chromatographic peaks processed with Skyline. This makes Panorama ideal for sharing targeted, quantitative results contained in Skyline documents with collaborators, reviewers, and the larger proteomics community. The Panorama Public repository employs the full data visualization capabilities of Panorama which facilitates sharing results with reviewers during manuscript review.


Subject(s)
Databases, Protein , Proteomics , Software , Mass Spectrometry , Web Browser
17.
Analyst ; 144(11): 3601-3612, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31065629

ABSTRACT

Porous graphitized carbon (PGC) based chromatography achieves high-resolution separation of glycan structures released from glycoproteins. This approach is especially valuable when resolving structurally similar isomers and for discovery of novel and/or sample-specific glycan structures. However, the implementation of PGC-based separations in glycomics studies has been limited because system-independent retention values have not been established to normalize technical variation. To address this limitation, this study combined the use of hydrolyzed dextran as an internal standard and Skyline software for post-acquisition normalization to reduce retention time and peak area technical variation in PGC-based glycan analyses. This approach allowed assignment of system-independent retention values that are applicable to typical PGC-based glycan separations and supported the construction of a library containing >300 PGC-separated glycan structures with normalized glucose unit (GU) retention values. To enable the automation of this normalization method, a spectral MS/MS library was developed of the dextran ladder, achieving confident discrimination against isomeric glycans. The utility of this approach is demonstrated in two ways. First, to inform the search space for bioinformatically predicted but unobserved glycan structures, predictive models for two structural modifications, core-fucosylation and bisecting GlcNAc, were developed based on the GU library. Second, the applicability of this method for the analysis of complex biological samples is evidenced by the ability to discriminate between cell culture and tissue sample types by the normalized intensity of N-glycan structures alone. Overall, the methods and data described here are expected to support the future development of more automated approaches to glycan identification and quantitation.


Subject(s)
Chromatography, Liquid/standards , Glycomics/standards , Polysaccharides/analysis , Tandem Mass Spectrometry/standards , Animals , Cell Line, Tumor , Chromatography, Liquid/methods , Glycomics/methods , Graphite/chemistry , HEK293 Cells , Humans , Isomerism , Male , Mice, Inbred BALB C , Polysaccharides/chemistry , Porosity , Tandem Mass Spectrometry/methods
18.
Mol Cell Proteomics ; 16(7): 1335-1347, 2017 07.
Article in English | MEDLINE | ID: mdl-28483925

ABSTRACT

Selected Reaction Monitoring (SRM) is a powerful tool for targeted detection and quantification of peptides in complex matrices. An important objective of SRM is to obtain peptide quantifications that are (1) suitable for the investigation, and (2) reproducible across laboratories and runs. The first objective is achieved by system suitability tests (SST), which verify that mass spectrometric instrumentation performs as specified. The second objective is achieved by quality control (QC), which provides in-process quality assurance of the sample profile. A common aspect of SST and QC is the longitudinal nature of the data. Although SST and QC have received a lot of attention in the proteomic community, the currently used statistical methods are limited. This manuscript improves upon the statistical methodology for SST and QC that is currently used in proteomics. It adapts the modern methods of longitudinal statistical process control, such as simultaneous and time weighted control charts and change point analysis, to SST and QC of SRM experiments, discusses their advantages, and provides practical guidelines. Evaluations on simulated data sets, and on data sets from the Clinical Proteomics Technology Assessment for Cancer (CPTAC) consortium, demonstrated that these methods substantially improve our ability of real time monitoring, early detection and prevention of chromatographic and instrumental problems. We implemented the methods in an open-source R-based software package MSstatsQC and its web-based graphical user interface. They are available for use stand-alone, or for integration with automated pipelines. Although the examples focus on targeted proteomics, the statistical methods in this manuscript apply more generally to quantitative proteomics.


Subject(s)
Peptides/analysis , Proteomics/standards , Humans , Internet , Mass Spectrometry , Quality Control , Software
19.
J Proteome Res ; 16(2): 945-957, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27990823

ABSTRACT

Detection of differentially abundant proteins in label-free quantitative shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments requires a series of computational steps that identify and quantify LC-MS features. It also requires statistical analyses that distinguish systematic changes in abundance between conditions from artifacts of biological and technical variation. The 2015 study of the Proteome Informatics Research Group (iPRG) of the Association of Biomolecular Resource Facilities (ABRF) aimed to evaluate the effects of the statistical analysis on the accuracy of the results. The study used LC-tandem mass spectra acquired from a controlled mixture, and made the data available to anonymous volunteer participants. The participants used methods of their choice to detect differentially abundant proteins, estimate the associated fold changes, and characterize the uncertainty of the results. The study found that multiple strategies (including the use of spectral counts versus peak intensities, and various software tools) could lead to accurate results, and that the performance was primarily determined by the analysts' expertise. This manuscript summarizes the outcome of the study, and provides representative examples of good computational and statistical practice. The data set generated as part of this study is publicly available.


Subject(s)
Chromatography, Liquid/standards , Laboratory Proficiency Testing , Proteome/isolation & purification , Proteomics/standards , Tandem Mass Spectrometry/standards , Data Interpretation, Statistical , Humans , Professional Competence , Proteome/standards , Proteomics/instrumentation , Proteomics/methods , Reproducibility of Results , Uncertainty
20.
Mol Cell Proteomics ; 14(9): 2301-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26217018

ABSTRACT

In mass spectrometry-based bottom-up proteomics, data-independent acquisition is an emerging technique because of its comprehensive and unbiased sampling of precursor ions. However, current data-independent acquisition methods use wide precursor isolation windows, resulting in cofragmentation and complex mixture spectra. Thus, conventional database searching tools that identify peptides by interpreting individual tandem MS spectra are inherently limited in analyzing data-independent acquisition data. Here we discuss an alternative approach, peptide-centric analysis, which tests directly for the presence and absence of query peptides. We discuss how peptide-centric analysis resolves some limitations of traditional spectrum-centric analysis, and we outline the unique characteristics of peptide-centric analysis in general.


Subject(s)
Peptides/isolation & purification , Proteome/analysis , Proteomics/methods , Databases, Protein , Humans , Software , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL