Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circulation ; 148(25): 2008-2016, 2023 12 19.
Article in English | MEDLINE | ID: mdl-37830218

ABSTRACT

BACKGROUND: Despite advances in medical and cardiac resynchronization therapy (CRT), individuals with chronic congestive heart failure (CHF) have persistent symptoms, including exercise intolerance. Optimizing cardio-locomotor coupling may increase stroke volume and skeletal muscle perfusion as previously shown in healthy runners. Therefore, we tested the hypothesis that exercise stroke volume and cardiac output would be higher during fixed-paced walking when steps were synchronized with the diastolic compared with systolic portion of the cardiac cycle in patients with CHF and CRT. METHODS: Ten participants (58±17 years of age; 40% female) with CHF and previously implanted CRT pacemakers completed 5-minute bouts of walking on a treadmill (range, 1.5-3 mph). Participants were randomly assigned to first walking to an auditory tone to synchronize their foot strike to either the systolic (0% or 100±15% of the R-R interval) or diastolic phase (45±15% of the R-R interval) of their cardiac cycle and underwent assessments of oxygen uptake (V̇o2; indirect calorimetry) and cardiac output (acetylene rebreathing). Data were compared through paired-samples t tests. RESULTS: V̇o2 was similar between conditions (diastolic 1.02±0.44 versus systolic 1.05±0.42 L/min; P=0.299). Compared with systolic walking, stroke volume (diastolic 80±28 versus systolic 74±26 mL; P=0.003) and cardiac output (8.3±3.5 versus 7.9±3.4 L/min; P=0.004) were higher during diastolic walking; heart rate (paced) was not different between conditions. Mean arterial pressure was significantly lower during diastolic walking (85±12 versus 98±20 mm Hg; P=0.007). CONCLUSIONS: In patients with CHF who have received CRT, diastolic stepping increases stroke volume and oxygen delivery and decreases afterload. We speculate that, if added to pacemakers, this cardio-locomotor coupling technology may maximize CRT efficiency and increase exercise participation and quality of life in patients with CHF.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Humans , Female , Male , Pilot Projects , Quality of Life , Heart Failure/therapy , Hemodynamics/physiology , Stroke Volume/physiology , Oxygen
2.
Circulation ; 147(5): 378-387, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36524474

ABSTRACT

BACKGROUND: Exercise intolerance is a defining characteristic of heart failure with preserved ejection fraction (HFpEF). A marked rise in pulmonary capillary wedge pressure (PCWP) during exertion is pathognomonic for HFpEF and is thought to be a key cause of exercise intolerance. If true, acutely lowering PCWP should improve exercise capacity. To test this hypothesis, we evaluated peak exercise capacity with and without nitroglycerin to acutely lower PCWP during exercise in patients with HFpEF. METHODS: Thirty patients with HFpEF (70±6 years of age; 63% female) underwent 2 bouts of upright, seated cycle exercise dosed with sublingual nitroglycerin or placebo control every 15 minutes in a single-blind, randomized, crossover design. PCWP (right heart catheterization), oxygen uptake (breath × breath gas exchange), and cardiac output (direct Fick) were assessed at rest, 20 Watts (W), and peak exercise during both placebo and nitroglycerin conditions. RESULTS: PCWP increased from 8±4 to 35±9 mm Hg from rest to peak exercise with placebo. With nitroglycerin, there was a graded decrease in PCWP compared with placebo at rest (-1±2 mm Hg), 20W (-5±5 mm Hg), and peak exercise (-7±6 mm Hg; drug × exercise stage P=0.004). Nitroglycerin did not affect oxygen uptake at rest, 20W, or peak (placebo, 1.34±0.48 versus nitroglycerin, 1.32±0.46 L/min; drug × exercise P=0.984). Compared with placebo, nitroglycerin lowered stroke volume at rest (-8±13 mL) and 20W (-7±11 mL), but not peak exercise (0±10 mL). CONCLUSIONS: Sublingual nitroglycerin lowered PCWP during submaximal and maximal exercise. Despite reduction in PCWP, peak oxygen uptake was not changed. These results suggest that acute reductions in PCWP are insufficient to improve exercise capacity, and further argue that high PCWP during exercise is not by itself a limiting factor for exercise performance in patients with HFpEF. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT04068844.


Subject(s)
Heart Failure , Female , Humans , Male , Exercise Test , Exercise Tolerance , Heart Failure/drug therapy , Hemodynamics , Nitroglycerin , Oxygen , Pulmonary Wedge Pressure , Single-Blind Method , Stroke Volume , Cross-Over Studies
3.
Echocardiography ; 41(6): e15857, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895911

ABSTRACT

BACKGROUND: In patients with hypertrophic cardiomyopathy (HCM), impaired augmentation of stroke volume and diastolic dysfunction contribute to exercise intolerance. Systolic-diastolic (S-D) coupling characterizes how systolic contraction of the left ventricle (LV) primes efficient elastic recoil during early diastole. Impaired S-D coupling may contribute to the impaired cardiac response to exercise in patients with HCM. METHODS: Patients with HCM (n = 25, age = 47 ± 9 years) and healthy adults (n = 115, age = 49 ± 10 years) underwent a cardiopulmonary exercise testing (CPET) and echocardiogram. S-D coupling was defined as the ratio of LV longitudinal excursion of the mitral annulus during early diastole (EDexc) and systole (Sexc) and compared between groups. Peak oxygen uptake (peak V̇O2) (Douglas bags), cardiac index (C2H2 rebreathe), and stroke volume index (SVi) were assessed during CPET. Linear regression was performed between S-D coupling and peak V̇O2, peak cardiac index, and peak SVi. RESULTS: S-D coupling was lower in HCM (Controls: 0.63 ± 0.08, HCM: 0.56 ± 0.10, p < 0.001). Peak V̇O2 and stroke volume reserve were lower in patients with HCM (Peak VO2 Controls: 28.5 ± 5.5, HCM: 23.7 ± 7.2 mL/kg/min, p < 0.001, SV reserve: Controls 39 ± 16, HCM 30 ± 18 mL, p = 0.008). In patients with HCM, S-D coupling was associated with peak V̇O2 (r = 0.47, p = 0.018), peak cardiac index (r = 0.60, p = 0.002), and peak SVi (r = 0.63, p < 0.001). CONCLUSION: Systolic-diastolic coupling was impaired in patients with HCM and was associated with fitness and the cardiac response to exercise. Inefficient S-D coupling may link insufficient stroke volume generation, diastolic dysfunction, and exercise intolerance in HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Diastole , Exercise Test , Stroke Volume , Systole , Humans , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnostic imaging , Male , Female , Middle Aged , Exercise Test/methods , Stroke Volume/physiology , Echocardiography/methods , Exercise Tolerance/physiology , Heart Ventricles/physiopathology , Heart Ventricles/diagnostic imaging , Adult , Exercise/physiology , Oxygen Consumption/physiology
4.
Exp Physiol ; 108(12): 1560-1568, 2023 12.
Article in English | MEDLINE | ID: mdl-37824038

ABSTRACT

Compression sonography has been proposed as a method for non-invasive measurement of venous pressures during spaceflight, but initial reports of venous pressure measured by compression ultrasound conflict with prior reports of invasively measured central venous pressure (CVP). The aim of this study is to determine the agreement of compression sonography of the internal jugular vein (IJVP) with invasive measures of CVP over a range of pressures relevant to microgravity exposure. Ten healthy volunteers (18-55 years, five female) completed two 3-day sessions of supine bed rest to simulate microgravity. IJVP and CVP were measured in the seated position, and in the supine position throughout 3 days of bed rest. The range of CVP recorded was in line with previous reports of CVP during changes in posture on Earth and in microgravity. The correlation between IJVP and CVP was poor when measured during spontaneous breathing (r = 0.29; R2  = 0.09; P = 0.0002; standard error of the estimate (SEE) = 3.0 mmHg) or end-expiration CVP (CVPEE ; r = 0.19; R2  = 0.04; P = 0.121; SEE = 3.0 mmHg). There was a modest correlation between the change in CVP and the change in IJVP for both spontaneous ΔCVP (r = 0.49; R2  = 0.24; P < 0.0001) and ΔCVPEE (r = 0.58; R2  = 0.34; P < 0.0001). Bland-Altman analysis of IJVP revealed a large positive bias compared to spontaneous breathing CVP (3.6 mmHg; SD = 4.0; CV = 85%; P < 0.0001) and CVPEE (3.6 mmHg; SD = 4.2; CV = 84%; P < 0.0001). Assessment of absolute IJVP via compression sonography correlated poorly with direct measurements of CVP by invasive catheterization over a range of venous pressures that are physiologically relevant to spaceflight. However, compression sonography showed modest utility for tracking changes in venous pressure over time. NEW FINDINGS: What is the central question of this study? Compression sonography has been proposed as a novel method for non-invasive measurement of venous pressures during spaceflight. However, the accuracy has not yet been confirmed in the range of CVP experienced by astronauts during spaceflight. What is the main finding and its importance? Our data show that compression sonography of the internal jugular vein correlates poorly with direct measurement of central venous pressures in a range that is physiologically relevant to spaceflight. However, compression sonography showed modest utility for tracking changes in venous pressure over time.


Subject(s)
Bed Rest , Jugular Veins , Humans , Female , Jugular Veins/diagnostic imaging , Jugular Veins/physiology , Venous Pressure , Central Venous Pressure/physiology , Ultrasonography
5.
Circulation ; 144(12): 934-946, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34543068

ABSTRACT

BACKGROUND: Individuals with left ventricular (LV) hypertrophy and elevated cardiac biomarkers in middle age are at increased risk for the development of heart failure with preserved ejection fraction. Prolonged exercise training reverses the LV stiffening associated with healthy but sedentary aging; however, whether it can also normalize LV myocardial stiffness in patients at high risk for heart failure with preserved ejection fraction is unknown. In a prospective, randomized controlled trial, we hypothesized that 1-year prolonged exercise training would reduce LV myocardial stiffness in patients with LV hypertrophy. METHODS: Forty-six patients with LV hypertrophy (LV septum >11 mm) and elevated cardiac biomarkers (N-terminal pro-B-type natriuretic peptide [>40 pg/mL] or high-sensitivity troponin T [>0.6 pg/mL]) were randomly assigned to either 1 year of high-intensity exercise training (n=30) or attention control (n=16). Right-heart catheterization and 3-dimensional echocardiography were performed while preload was manipulated using both lower body negative pressure and rapid saline infusion to define the LV end-diastolic pressure-volume relationship. A constant representing LV myocardial stiffness was calculated from the following: P=S×[Exp {a (V-V0)}-1], where "P" is transmural pressure (pulmonary capillary wedge pressure - right atrial pressure), "S" is the pressure asymptote of the curve, "V" is the LV end-diastolic volume index, "V0" is equilibrium volume, and "a" is the constant that characterizes LV myocardial stiffness. RESULTS: Thirty-one participants (exercise group [n=20]: 54±6 years, 65% male; and controls (n=11): 51±6 years, 55% male) completed the study. One year of exercise training increased max by 21% (baseline 26.0±5.3 to 1 year later 31.3±5.8 mL·min-1·kg-1, P<0.0001, interaction P=0.0004), whereas there was no significant change in max in controls (baseline 24.6±3.4 to 1 year later 24.2±4.1 mL·min-1·kg-1, P=0.986). LV myocardial stiffness was reduced (right and downward shift in the end-diastolic pressure-volume relationship; LV myocardial stiffness: baseline 0.062±0.020 to 1 year later 0.031±0.009), whereas there was no significant change in controls (baseline 0.061±0.033 to 1 year later 0.066±0.031, interaction P=0.001). CONCLUSIONS: In patients with LV hypertrophy and elevated cardiac biomarkers (stage B heart failure with preserved ejection fraction), 1 year of exercise training reduced LV myocardial stiffness. Thus, exercise training may provide protection against the future risk of heart failure with preserved ejection fraction in such patients. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03476785.


Subject(s)
Exercise/physiology , Heart Failure/diagnostic imaging , Heart Failure/therapy , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/therapy , Stroke Volume/physiology , Exercise Test/methods , Female , Heart Failure/physiopathology , Humans , Hypertrophy, Left Ventricular/physiopathology , Male , Middle Aged , Prospective Studies , Time Factors , Ventricular Function, Left/physiology
6.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R581-R588, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36094450

ABSTRACT

Compared with younger adults, passive heating induced increases in cardiac output are attenuated by ∼50% in older adults. This attenuated response may be associated with older individuals' inability to maintain stroke volume through ionotropic mechanisms and/or through altered chronotropic mechanisms. The purpose of this study was to identify the interactive effect of age and hyperthermia on cardiac responsiveness to dobutamine-induced cardiac stimulation. Eleven young (26 ± 4 yr) and 8 older (68 ± 5 yr) participants underwent a normothermic and a hyperthermic (baseline core temperature +1.2°C) trial on the same day. In both thermal conditions, after baseline measurements, intravenous dobutamine was administered for 12 min at 5 µg/kg/min, followed by 12 min at 15 µg/kg/min. Primary measurements included echocardiography-based assessments of cardiac function, gastrointestinal and skin temperatures, heart rate, and mean arterial pressure. Heart rate responses to dobutamine were similar between groups in both thermal conditions (P > 0.05). The peak systolic mitral annular velocity (S'), i.e., an index of left ventricular longitudinal systolic function, was similar between groups for both thermal conditions at baseline. While normothermic, the increase in S' between groups was similar with dobutamine administration. However, while hyperthermic, the increase in S' was attenuated in the older participants with dobutamine (P < 0.001). Healthy, older individuals show attenuated inotropic, but maintained chronotropic responsiveness to dobutamine administration during hyperthermia. These data suggest that older individuals have a reduced capacity to increase cardiomyocyte contractility, estimated by changes in S', via ß1-adrenergic mechanisms while hyperthermic.


Subject(s)
Dobutamine , Hyperthermia, Induced , Adrenergic Agents/pharmacology , Aged , Cardiac Output , Dobutamine/pharmacology , Heart Rate/physiology , Humans , Stroke Volume/physiology , Ventricular Function, Left/physiology
7.
Echocardiography ; 38(2): 261-270, 2021 02.
Article in English | MEDLINE | ID: mdl-33438312

ABSTRACT

BACKGROUND: Age-related changes to left ventricular (LV) early diastolic recoil confound the diagnostic value of e' velocity in heart failure with preserved ejection fraction (HFpEF). Systolic-diastolic coupling quantifies passive left ventricular elastic recoil and may be superior to e' in differentiating abnormal diastolic recoil in HFpEF from healthy aging. This study aims to determine the effect of healthy aging and HFpEF on systolic-diastolic coupling. METHODS: Healthy adults (n = 141, aged 20-90 years) underwent right heart catheterization (RHC) to quantify LV filling pressure and tissue Doppler echocardiography to define peak velocities and excursion (velocity time integral) of the mitral annulus. Separately, HFpEF patients (n = 12, age 67 ± 5 years) and controls (n = 12, age 68 ± 5 years) underwent RHC and echocardiography. Systolic-diastolic coupling was measured as early diastolic excursion (EDexc ) divided by systolic excursion (Sexc ). RESULTS: In healthy adults, EDexc / Sexc declined by 15% per decade of life (r2  = 0.53, P < .001). EDexc /Sexc was significantly lower in HFpEF compared with controls (0.43 ± 0.11 vs 0.56 ± 0.11, P = .011), while e' was similar (6.2 ± 1.5 vs 6.8 ± 1.3 cm/s, P = .33). Using ROC analysis, EDexc /Sexc had an AUC to detect HFpEF of 0.82 (0.61-0.95, P = .007), which was superior to e' alone (AUC 0.60(0.39-0.80), P = .39; P = .026 for difference). CONCLUSIONS: Systolic-diastolic coupling, quantified by the EDexc /Sexc ratio, declined linearly with healthy aging. The EDexc /Sexc ratio was further reduced in HFpEF and able to predict HFpEF more accurately than e' alone. Systolic-diastolic coupling may be a useful diagnostic tool to detect HFpEF.


Subject(s)
Healthy Aging , Heart Failure , Ventricular Dysfunction, Left , Adult , Aged , Diastole , Heart Failure/diagnostic imaging , Humans , Middle Aged , Stroke Volume , Systole , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Function, Left
9.
Radiographics ; 39(5): 1238-1263, 2019.
Article in English | MEDLINE | ID: mdl-31373865

ABSTRACT

Multiple bands and bandlike structures can be found within the cardiac chambers, which can be evaluated with various imaging modalities including echocardiography, CT, MRI, and invasive angiography. These bands can be classified as normal structures or normal variants, aberrant structures, or pathologic entities. Normal structures include the crista terminalis, taenia sagittalis, Chiari network, coumadin ridge, moderator band, papillary muscles, and chordae tendineae. Aberrant structures include aberrant papillary muscles, accessory chordae, false tendons, and accessory mitral valve tissue. Pathologic entities include double-chambered right ventricle, double-chambered left ventricle, cor triatriatum, and subaortic stenosis. Several types of bands are incidental findings discovered at imaging and do not produce clinical symptoms. However, some bands can mimic cardiac diseases, including masses. More importantly, some bands are pathologic entities that produce symptoms owing to hemodynamic consequences. Performing multimodality imaging helps the radiologist (a) identify, localize, and characterize the bands; (b) determine if they are normal structures, abnormal structures, or pathologic entities; (c) distinguish them from cardiac pathologic conditions; and (d) evaluate the secondary consequences of pathologic entities. This article reviews the various bands visualized within the cardiac chambers, as well as the role of imaging in depicting the bands, their appearances across various imaging modalities, and their clinical significance. Online supplemental material is available for this article. ©RSNA, 2019.


Subject(s)
Heart Diseases/diagnostic imaging , Heart Diseases/pathology , Heart/anatomy & histology , Heart/diagnostic imaging , Multimodal Imaging , Diagnosis, Differential , Humans
10.
Radiographics ; 39(4): 932-956, 2019.
Article in English | MEDLINE | ID: mdl-31150303

ABSTRACT

Replacement with a prosthetic heart valve (PHV) remains the definitive surgical procedure for management of severe cardiac valve disease. PHV dysfunction is uncommon but can be a life-threatening condition. The broad hemodynamic and pathophysiologic manifestations of PHV dysfunction are stenosis, regurgitation, and a stuck leaflet. Specific structural abnormalities that cause PHV dysfunction include prosthetic valve-patient mismatch, structural failure, valve calcification, dehiscence, paravalvular leak, infective endocarditis, abscess, pseudoaneurysm, abnormal connections, thrombus, hypoattenuating leaflet thickening, and pannus. Multiple imaging modalities are available for evaluating a PHV and its dysfunction. Transthoracic echocardiography is often the first-line imaging modality, with additional modalities such as transesophageal echocardiography, CT, MRI, cine fluoroscopy, and nuclear medicine used for further characterization and establishing a specific cause. The authors review PHVs and the role of imaging modalities in evaluation of PHV dysfunction and illustrate the imaging appearances of different complications. Online supplemental material is available for this article. ©RSNA, 2019.


Subject(s)
Heart Valve Diseases/diagnostic imaging , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis/adverse effects , Postoperative Complications/diagnostic imaging , Aortic Dissection/diagnostic imaging , Aneurysm, False/diagnostic imaging , Bioprosthesis/adverse effects , Calcinosis/diagnostic imaging , Cineradiography/methods , Constriction, Pathologic , Echocardiography/methods , Endocarditis/diagnostic imaging , Heart Valve Diseases/etiology , Heart Valve Diseases/physiopathology , Hemodynamics , Humans , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Postoperative Complications/etiology , Prosthesis Design , Prosthesis Failure , Single Photon Emission Computed Tomography Computed Tomography/methods , Surgical Wound Dehiscence/diagnostic imaging
12.
Circ Res ; 119(4): 564-71, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27267067

ABSTRACT

RATIONALE: Peripheral arterial disease (PAD) is a clinical manifestation of extracoronary atherosclerosis. Despite sharing the same risk factors, only 20% to 30% of patients with coronary artery disease (CAD) develop PAD. Decline in the number of bone marrow-derived circulating progenitor cells (PCs) is thought to contribute to the pathogenesis of atherosclerosis. Whether specific changes in PCs differentiate patients with both PAD and CAD from those with CAD alone is unknown. OBJECTIVE: Determine whether differences exist in PCs counts of CAD patients with and without known PAD. METHODS AND RESULTS: 1497 patients (mean age: 65 years; 62% men) with known CAD were identified in the Emory Cardiovascular Biobank. Presence of PAD (n=308) was determined by history, review of medical records, or imaging and was classified as carotid (53%), lower extremity (41%), upper extremity (3%), and aortic disease (33%). Circulating PCs were enumerated by flow cytometry. Patients with CAD and PAD had significantly lower PC counts compared with those with only CAD. In multivariable analysis, a 50% decrease in cluster of differentiation 34 (CD34+) or CD34+/vascular endothelial growth factor receptor-2 (VEGFR2+) counts was associated with a 31% (P=0.032) and 183% (P=0.002) increase in the odds of having PAD, respectively. CD34+ and CD34+/VEGFR2+ counts significantly improved risk prediction metrics for prevalent PAD. Low CD34+/VEGFR2+ counts were associated with a 1.40-fold (95% confidence interval, 1.03-1.91) and a 1.64-fold (95% confidence interval, 1.07-2.50) increases in the risk of mortality and PAD-related events, respectively. CONCLUSIONS: PAD is associated with low CD34+ and CD34+/VEGFR2+ PC counts. Whether low PC counts are useful in screening for PAD needs to be investigated.


Subject(s)
Coronary Artery Disease/blood , Coronary Artery Disease/epidemiology , Peripheral Arterial Disease/blood , Peripheral Arterial Disease/epidemiology , Stem Cells/metabolism , Aged , Aged, 80 and over , Blood Cell Count/methods , Coronary Artery Disease/diagnosis , Female , Humans , Male , Middle Aged , Peripheral Arterial Disease/diagnosis , Prospective Studies , Registries
15.
Respir Physiol Neurobiol ; 325: 104256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583744

ABSTRACT

We investigated whether central or peripheral limitations to oxygen uptake elicit different respiratory sensations and whether dyspnea on exertion (DOE) provokes unpleasantness and negative emotions in patients with heart failure with preserved ejection fraction (HFpEF). 48 patients were categorized based on their cardiac output (Q̇c)/oxygen uptake (V̇O2) slope and stroke volume (SV) reserve during an incremental cycling test. 15 were classified as centrally limited and 33 were classified as peripherally limited. Ratings of perceived breathlessness (RPB) and unpleasantness (RPU) were assessed (Borg 0-10 scale) during a 20 W cycling test. 15 respiratory sensations statements (1-10 scale) and 5 negative emotions statements (1-10) were subsequently rated. RPB (Central: 3.5±2.0 vs. Peripheral: 3.4±2.0, p=0.86), respiratory sensations, or negative emotions were not different between groups (p>0.05). RPB correlated (p<0.05) with RPU (r=0.925), "anxious" (r=0.610), and "afraid" (r=0.383). While DOE provokes elevated levels of negative emotions, DOE and respiratory sensations seem more related to a common mechanism rather than central and/or peripheral limitations in HFpEF.


Subject(s)
Dyspnea , Heart Failure , Stroke Volume , Humans , Heart Failure/physiopathology , Male , Female , Aged , Dyspnea/physiopathology , Middle Aged , Stroke Volume/physiology , Perception/physiology , Exercise/physiology , Exercise Test , Oxygen Consumption/physiology , Emotions/physiology
16.
Hypertension ; 81(4): 917-926, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385250

ABSTRACT

BACKGROUND: We tested the hypothesis that patients with heart failure with preserved ejection fraction (HFpEF) would have greater muscle sympathetic nerve activity (MSNA) at rest and sympathetic reactivity during a cold pressor test compared with non-heart failure controls. Further, given the importance of the baroreflex modulation of MSNA in the control of blood pressure (BP), we hypothesized that patients with HFpEF would exhibit a reduced sympathetic baroreflex sensitivity. METHODS: Twenty-eight patients with HFpEF and 44 matched controls (mean±SD: 71±8 versus 70±7 years; 9 men/19 women versus 16 men/28 women) were studied. BP, heart rate, and MSNA (microneurography) were measured during 6 to 10 minutes of supine rest and the 2-minute cold pressor test. Spontaneous sympathetic baroreflex sensitivity was assessed during supine rest. RESULTS: Patients with HFpEF had higher resting MSNA burst frequency (39±14 versus 31±12 bursts/min; P=0.020) and lower sympathetic baroreflex sensitivity (-2.83±0.76 versus -3.57±1.19 bursts/100 heartbeats/mm Hg; P=0.019) than controls, but burst incidence was not different between groups (56±19 versus 50±20 bursts/100 heartbeats; P=0.179). During the cold pressor test, increases in MSNA indices did not differ between groups (P=0.135-0.998), but patients had a smaller increase in diastolic BP (Δ4±6 versus Δ14±11 mm Hg; P<0.001) compared with controls. CONCLUSIONS: Despite augmented resting MSNA burst frequency, burst incidence was not significantly different between groups, and sympathetic baroreflex sensitivity was reduced in patients with HFpEF. Furthermore, patients had preserved sympathetic reactivity but attenuated diastolic BP responses during the cold pressor test. These data suggest that, during physiological stress, sympathetic reactivity is intact, but the peripheral pathway for sympathetic vasoconstriction may be impaired in HFpEF.


Subject(s)
Heart Failure , Male , Humans , Female , Heart Failure/diagnosis , Stroke Volume , Baroreflex/physiology , Blood Pressure/physiology , Sympathetic Nervous System , Heart Rate/physiology , Muscle, Skeletal/physiology
17.
Circ Heart Fail ; 17(8): e011693, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39051098

ABSTRACT

BACKGROUND: We identified peripherally limited patients using cardiopulmonary exercise testing and measured skeletal muscle oxygen transport and utilization during invasive single leg exercise testing to identify the mechanisms of the peripheral limitation. METHODS: Forty-five patients with heart failure with preserved ejection fraction (70±7 years, 27 females) completed seated upright cardiopulmonary exercise testing and were defined as having a (1) peripheral limitation to exercise if cardiac output/oxygen consumption (VO2) was elevated (≥6) or 5 to 6 with a stroke volume reserve >50% (n=31) or (2) a central limitation to exercise if cardiac output/VO2 slope was ≤5 or 5 to 6 with stroke volume reserve <50% (n=14). Single leg knee extension exercise was used to quantify peak leg blood flow (Doppler ultrasound), arterial-to-venous oxygen content difference (femoral venous catheter), leg VO2, and muscle oxygen diffusive conductance. In a subset of participants (n=36), phosphocreatine recovery time was measured by magnetic resonance spectroscopy to determine skeletal muscle oxidative capacity. RESULTS: Peak VO2 during cardiopulmonary exercise testing was not different between groups (central: 13.9±5.7 versus peripheral: 12.0±3.1 mL/min per kg; P=0.135); however, the peripheral group had a lower peak arterial-to-venous oxygen content difference (central: 13.5±2.0 versus peripheral: 11.1±1.6 mLO2/dL blood; P<0.001). During single leg knee extension, there was no difference in peak leg VO2 (P=0.306), but the peripherally limited group had greater blood flow/VO2 ratio (P=0.024), lower arterial-to-venous oxygen content difference (central: 12.3±2.5 versus peripheral: 10.3±2.2 mLO2/dL blood; P=0.013), and lower muscle oxygen diffusive conductance (P=0.021). A difference in magnetic resonance spectroscopy-derived phosphocreatine recovery time was not detected (P=0.199). CONCLUSIONS: Peripherally limited patients with heart failure with preserved ejection fraction identified by cardiopulmonary exercise testing have impairments in oxygen transport and utilization at the level of the skeletal muscle quantified by invasive knee extension exercise testing, which includes an increased blood flow/V̇O2 ratio and poor muscle diffusive capacity. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04068844.


Subject(s)
Exercise Test , Exercise Tolerance , Heart Failure , Muscle, Skeletal , Oxygen Consumption , Stroke Volume , Humans , Female , Heart Failure/physiopathology , Heart Failure/metabolism , Male , Aged , Stroke Volume/physiology , Oxygen Consumption/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Exercise Tolerance/physiology , Middle Aged , Phenotype , Cardiac Output/physiology , Regional Blood Flow/physiology , Phosphocreatine/metabolism , Magnetic Resonance Spectroscopy
18.
Obesity (Silver Spring) ; 31(7): 1884-1893, 2023 07.
Article in English | MEDLINE | ID: mdl-37368514

ABSTRACT

OBJECTIVE: The aim of this retrospective study was to determine whether regional epicardial adipose tissue (EAT) exerts localized effects on adjacent myocardial left ventricular (LV) function. METHODS: Cardiac magnetic resonance imaging (MRI), echocardiography, dual-energy x-ray absorptiometry, and exercise testing were performed in 71 patients with obesity with elevated cardiac biomarkers and visceral fat. Total and regional (anterior, inferior, lateral, right ventricular) EAT was quantified by MRI. Diastolic function was quantified by echocardiography. MRI was used to quantify regional longitudinal LV strain. RESULTS: EAT was associated with visceral adiposity (r = 0.47, p < 0.0001) but not total fat mass. Total EAT was associated with markers of diastolic function (early tissue Doppler relaxation velocity [e'], mitral inflow velocity ratio [E/A], early mitral inflow/e' ratio [E/e']), but only E/A remained significant after adjustment for visceral adiposity (r = -0.30, p = 0.015). Right ventricular and LV EAT had similar associations with diastolic function. There was no evidence for localized effects of regional EAT deposition on adjacent regional longitudinal strain. CONCLUSIONS: There was no association between regional EAT deposition and corresponding regional LV segment function. Furthermore, the association between total EAT and diastolic function was attenuated after adjustment for visceral fat, indicating that systemic metabolic impairments contribute to diastolic dysfunction in high-risk middle-aged adults.


Subject(s)
Pericardium , Ventricular Dysfunction, Left , Adult , Middle Aged , Humans , Retrospective Studies , Pericardium/diagnostic imaging , Adipose Tissue , Ventricular Function, Left , Diastole , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/pathology
19.
Respir Physiol Neurobiol ; 318: 104167, 2023 12.
Article in English | MEDLINE | ID: mdl-37758032

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) patients have an increased ventilatory demand. Whether their ventilatory capacity can meet this increased demand is unknown, especially in those with obesity. Body composition (DXA) and pulmonary function were measured in 20 patients with HFpEF (69 ± 6 yr;9 M/11 W). Cardiorespiratory responses, breathing mechanics, and ratings of perceived breathlessness (RPB, 0-10) were measured at rest, 20 W, and peak exercise. FVC correlated with %body fat (R2 =0.51,P = 0.0006), V̇O2peak (%predicted,R2 =0.32,P = 0.001), and RPB (R2 =0.58,P = 0.0004). %Body fat correlated with end-expiratory lung volume at rest (R2 =0.76,P < 0.001), 20 W (R2 =0.72,P < 0.001), and peak exercise (R2 =0.74,P < 0.001). Patients were then divided into two groups: those with lower ventilatory reserve (FVC<3 L,2 M/10 W) and those with higher ventilatory reserve (FVC>3.8 L,7 M/1 W). V̇O2peak was ∼22% less (p < 0.05) and RPB was twice as high at 20 W (p < 0.01) in patients with lower ventilatory reserve. Ventilatory reserves are limited in patients with HFpEF and obesity; indeed, the margin between ventilatory demand and capacity is so narrow that exercise capacity could be ventilatory limited in many patients.


Subject(s)
Heart Failure , Humans , Stroke Volume , Lung , Dyspnea , Exercise Test , Exercise Tolerance , Obesity
20.
JACC Heart Fail ; 11(7): 760-771, 2023 07.
Article in English | MEDLINE | ID: mdl-37086245

ABSTRACT

BACKGROUND: Impaired ventricular relaxation influences left ventricular pressures during exercise in heart failure with preserved ejection fraction (HFpEF). Sarco/endoplasmic reticulum calcium-adenosine triphosphatase (SERCA2a) facilitates myocardial relaxation by increasing calcium reuptake and is impaired in HFpEF. OBJECTIVES: This study sought to investigate the effects of istaroxime, a SERCA2 agonist, on lusitropic and hemodynamic function during exercise in patients with HFpEF and control subjects. METHODS: Eleven control subjects (7 male, 4 female) and 15 patients with HFpEF (8 male, 7 female) performed upright cycle exercise with right-sided heart catheterization. Participants received istaroxime (0.5 µg/kg/min) or saline placebo (single-blind, crossover design). Cardiac output, pulmonary capillary wedge pressure (PCWP), and diastolic function were measured at rest and during submaximal exercise. In an exploratory analysis (Hedge's g), 7 patients with HFpEF received higher-dose istaroxime (1.0 µg/kg/min). End-systolic elastance (Ees) was calculated by dividing systolic blood pressure (SBP) × 0.9 by end-systolic volume (ESV) (on 3-dimensional echocardiography). RESULTS: Patients with HFpEF had higher PCWP (25 ± 10 mm Hg vs 12 ± 5 mm Hg; P < 0.001) and lower tissue Doppler velocities during exercise. Istaroxime (0.5 µg/kg/min) had no effect on resting or exercise measures in patients with HFpEF or control subjects. Control subjects had a larger increase in Ees (Δ 1.55 ± 0.99 mm Hg/mL vs Δ 0.86 ± 1.31 mm Hg/mL; P = 0.03), driven by lower ESV. Comparing placebo and istaroxime 1.0 µg/kg/min during exercise, PCWP during the 1.0 µg/kg/min istaroxime dose was slightly lower (Δ 2.2 mm Hg; Hedge's g = 0.30). There were no effects on diastolic function, but there were increases in SBP and s', suggesting a mild inotropic effect. CONCLUSIONS: Low-dose istaroxime had no effect on cardiac filling pressure or parameters of relaxation in patients with HFpEF during exercise. Higher doses of istaroxime may have been more effective in reducing exercise PCWP in patients with HFpEF. (Hemodynamic Response to Exercise in HFpEF Patients After Upregulation of SERCA2a; NCT02772068).


Subject(s)
Heart Failure , Humans , Male , Female , Stroke Volume/physiology , Calcium , Single-Blind Method , Heart , Cardiac Catheterization , Ventricular Function, Left/physiology
SELECTION OF CITATIONS
SEARCH DETAIL