Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nature ; 608(7924): 724-732, 2022 08.
Article in English | MEDLINE | ID: mdl-35948631

ABSTRACT

The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.


Subject(s)
Lymphocytes , Mutation , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Differentiation , Cell Proliferation , Cellular Microenvironment , DNA Damage/genetics , DNA Damage/radiation effects , Germinal Center/cytology , Germinal Center/immunology , Humans , Immunologic Memory/genetics , Lymphocytes/cytology , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/pathology , Neoplasms/genetics , Neoplasms/pathology
2.
Nature ; 593(7859): 405-410, 2021 05.
Article in English | MEDLINE | ID: mdl-33911282

ABSTRACT

Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.


Subject(s)
Blood Cells/metabolism , Cell Differentiation/genetics , DNA Mutational Analysis/methods , Muscle, Smooth/metabolism , Mutation , Neurons/metabolism , Single Molecule Imaging/methods , Stem Cells/metabolism , Alzheimer Disease/genetics , Blood Cells/cytology , Cell Division , Cohort Studies , Colon/cytology , Epithelium/metabolism , Granulocytes/cytology , Granulocytes/metabolism , Healthy Volunteers , Humans , Male , Middle Aged , Muscle, Smooth/cytology , Mutagenesis , Mutation Rate , Neurons/cytology , Stem Cells/cytology
3.
Genome ; 61(4): 287-297, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28945978

ABSTRACT

The diversity of mating systems among animals is astounding. Importantly, similar mating systems have evolved even across distantly related taxa. However, our understanding of the mechanisms underlying these convergently evolved phenotypes is limited. Here, we examine on a genomic scale the neuromolecular basis of social organization in cichlids of the tribe Ectodini from Lake Tanganyika. Using field-collected males and females of four closely related species representing two independent evolutionary transitions from polygyny to monogamy, we take a comparative transcriptomic approach to test the hypothesis that these independent transitions have recruited similar gene sets. Our results demonstrate that while lineage and species exert a strong influence on neural gene expression profiles, social phenotype can also drive gene expression evolution. Specifically, 331 genes (∼6% of those assayed) were associated with monogamous mating systems independent of species or sex. Among these genes, we find a strong bias (4:1 ratio) toward genes with increased expression in monogamous individuals. A highly conserved nonapeptide system known to be involved in the regulation of social behavior across animals was not associated with mating system in our analysis. Overall, our findings suggest deep molecular homologies underlying the convergent or parallel evolution of monogamy in different cichlid lineages of Ectodini.


Subject(s)
Cichlids/genetics , Oligonucleotide Array Sequence Analysis/methods , Reproduction/genetics , Transcriptome , Animals , Cichlids/classification , Female , Genomics/methods , Lakes , Male , Phylogeny , Species Specificity , Tanzania
4.
Mol Ecol ; 25(3): 723-40, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26523848

ABSTRACT

Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster.


Subject(s)
Drosophila melanogaster/genetics , Drosophila simulans/genetics , Genetics, Population , Animals , Gene Frequency , Genomics , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide , Selection, Genetic , Sequence Analysis, DNA , United States
5.
BMC Genomics ; 15: 161, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24571567

ABSTRACT

BACKGROUND: Gene duplication is a source of evolutionary innovation and can contribute to the divergence of lineages; however, the relative importance of this process remains to be determined. The explosive divergence of the African cichlid adaptive radiations provides both a model for studying the general role of gene duplication in the divergence of lineages and also an exciting foray into the identification of genomic features that underlie the dramatic phenotypic and ecological diversification in this particular lineage. We present the first genome-wide study of gene duplication in African cichlid fishes, identifying gene duplicates in three species belonging to the Lake Malawi adaptive radiation (Metriaclima estherae, Protomelas similis, Rhamphochromis "chilingali") and one closely related species from a non-radiated riverine lineage (Astatotilapia tweddlei). RESULTS: Using Astatotilapia burtoni as reference, microarray comparative genomic hybridization analysis of 5689 genes reveals 134 duplicated genes among the four cichlid species tested. Between 51 and 55 genes were identified as duplicated in each of the three species from the Lake Malawi radiation, representing a 38%-49% increase in number of duplicated genes relative to the non-radiated lineage (37 genes). Duplicated genes include several that are involved in immune response, ATP metabolism and detoxification. CONCLUSIONS: These results contribute to our understanding of the abundance and type of gene duplicates present in cichlid fish lineages. The duplicated genes identified in this study provide candidates for the analysis of functional relevance with regard to phenotype and divergence. Comparative sequence analysis of gene duplicates can address the role of positive selection and adaptive evolution by gene duplication, while further study across the phylogenetic range of cichlid radiations (and more generally in other adaptive radiations) will determine whether the patterns of gene duplication seen in this study consistently accompany rapid radiation.


Subject(s)
Adaptation, Biological/genetics , Adaptation, Biological/radiation effects , Cichlids/genetics , Gene Duplication , Animals , Comparative Genomic Hybridization , Evolution, Molecular , Gene Dosage , Reproducibility of Results
6.
Nat Commun ; 14(1): 5092, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608017

ABSTRACT

Clonal tracking of cells using somatic mutations permits exploration of clonal dynamics in human disease. Here, we perform whole genome sequencing of 323 haematopoietic colonies from 10 individuals with the inherited ribosomopathy Shwachman-Diamond syndrome to reconstruct haematopoietic phylogenies. In ~30% of colonies, we identify mutually exclusive mutations in TP53, EIF6, RPL5, RPL22, PRPF8, plus chromosome 7 and 15 aberrations that increase SBDS and EFL1 gene dosage, respectively. Target gene mutations commence in utero, resulting in a profusion of clonal expansions, with only a few haematopoietic stem cell lineages (mean 8, range 1-24) contributing ~50% of haematopoietic colonies across 8 individuals (range 4-100% clonality) by young adulthood. Rapid clonal expansion during disease transformation is associated with biallelic TP53 mutations and increased mutation burden. Our study highlights how convergent somatic mutation of the p53-dependent nucleolar surveillance pathway offsets the deleterious effects of germline ribosomopathy but increases opportunity for TP53-mutated cancer evolution.


Subject(s)
Chromosomes, Human, Pair 7 , Germ Cells , Humans , Young Adult , Adult , Gene Dosage , Hematopoietic Stem Cells , Mutation
7.
Elife ; 102021 06 22.
Article in English | MEDLINE | ID: mdl-34155971

ABSTRACT

To advance our understanding of adaptation to temporally varying selection pressures, we identified signatures of seasonal adaptation occurring in parallel among Drosophila melanogaster populations. Specifically, we estimated allele frequencies genome-wide from flies sampled early and late in the growing season from 20 widely dispersed populations. We identified parallel seasonal allele frequency shifts across North America and Europe, demonstrating that seasonal adaptation is a general phenomenon of temperate fly populations. Seasonally fluctuating polymorphisms are enriched in large chromosomal inversions, and we find a broad concordance between seasonal and spatial allele frequency change. The direction of allele frequency change at seasonally variable polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking the environment and the genomic response to selection. Our results suggest that fluctuating selection is an important evolutionary force affecting patterns of genetic variation in Drosophila.


Subject(s)
Adaptation, Biological , Chromosome Inversion , Drosophila melanogaster/physiology , Gene Frequency , Polymorphism, Genetic , Animals , Austria , Drosophila melanogaster/genetics , Male , Ontario , Seasons , Selection, Genetic , Spain , Ukraine , United States
8.
BMC Genomics ; 11: 304, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20465839

ABSTRACT

BACKGROUND: Comparison of genomic DNA among closely related strains or species is a powerful approach for identifying variation in evolutionary processes. One potent source of genomic variation is gene duplication, which is prevalent among individuals and species. Array comparative genomic hybridization (aCGH) has been successfully utilized to detect this variation among lineages. Here, beyond the demonstration that gene duplicates among species can be quantified with aCGH, we consider the effect of sequence divergence on the ability to detect gene duplicates. RESULTS: Using the X chromosome genomic content difference between male D. melanogaster and female D. yakuba and D. simulans, we describe a decrease in the ability to accurately measure genomic content (copy number) for orthologs that are only 90% identical. We demonstrate that genome characteristics (e.g. chromatin environment and non-orthologous sequence similarity) can also affect the ability to accurately measure genomic content. We describe a normalization strategy and statistical criteria to be used for the identification of gene duplicates among any species group for which an array platform is available from a closely related species. CONCLUSIONS: Array CGH can be used to effectively identify gene duplication and genome content; however, certain biases are present due to sequence divergence and other genome characteristics resulting from the divergence between lineages. Highly conserved gene duplicates will be more readily recovered by aCGH. Duplicates that have been retained for a selective advantage due to directional selection acting on many loci in one or both gene copies are likely to be under-represented. The results of this study should inform the interpretation of both previously published and future work that employs this powerful technique.


Subject(s)
Comparative Genomic Hybridization , Drosophila/genetics , Genes, Duplicate , Animals , Drosophila/classification , Female , Male , X Chromosome
9.
BMC Genomics ; 11: 271, 2010 Apr 29.
Article in English | MEDLINE | ID: mdl-20429934

ABSTRACT

BACKGROUND: Genome-wide analysis of sequence divergence among species offers profound insights into the evolutionary processes that shape lineages. When full-genome sequencing is not feasible for a broad comparative study, we propose the use of array-based comparative genomic hybridization (aCGH) in order to identify orthologous genes with high sequence divergence. Here we discuss experimental design, statistical power, success rate, sources of variation and potential confounding factors. We used a spotted PCR product microarray platform from Drosophila melanogaster to assess sequence divergence on a gene-by-gene basis in three fully sequenced heterologous species (D. sechellia, D. simulans, and D. yakuba). Because complete genome assemblies are available for these species this study presents a powerful test for the use of aCGH as a tool to measure sequence divergence. RESULTS: We found a consistent and linear relationship between hybridization ratio and sequence divergence of the sample to the platform species. At higher levels of sequence divergence (< 92% sequence identity to D. melanogaster) approximately 84% of features had significantly less hybridization to the array in the heterologous species than the platform species, and thus could be identified as "diverged". At lower levels of divergence (>or= 97% identity), only 13% of genes were identified as diverged. While approximately 40% of the variation in hybridization ratio can be accounted for by variation in sequence identity of the heterologous sample relative to D. melanogaster, other individual characteristics of the DNA sequences, such as GC content, also contribute to variation in hybridization ratio, as does technical variation. CONCLUSIONS: Here we demonstrate that aCGH can accurately be used as a proxy to estimate genome-wide divergence, thus providing an efficient way to evaluate how evolutionary processes and genomic architecture can shape species diversity in non-model systems. Given the increased number of species for which microarray platforms are available, comparative studies can be conducted for many interesting lineages in order to identify highly diverged genes that may be the target of natural selection.


Subject(s)
Comparative Genomic Hybridization , Drosophila melanogaster/genetics , Drosophila/genetics , Animals , Base Sequence , Genome , Microarray Analysis
10.
Genetics ; 214(2): 511-528, 2020 02.
Article in English | MEDLINE | ID: mdl-31871131

ABSTRACT

Codon usage bias (CUB), where certain codons are used more frequently than expected by chance, is a ubiquitous phenomenon and occurs across the tree of life. The dominant paradigm is that the proportion of preferred codons is set by weak selection. While experimental changes in codon usage have at times shown large phenotypic effects in contrast to this paradigm, genome-wide population genetic estimates have supported the weak selection model. Here we use deep genomic population sequencing of two Drosophila melanogaster populations to measure selection on synonymous sites in a way that allowed us to estimate the prevalence of both weak and strong purifying selection. We find that selection in favor of preferred codons ranges from weak (|Nes| ∼ 1) to strong (|Nes| > 10), with strong selection acting on 10-20% of synonymous sites in preferred codons. While previous studies indicated that selection at synonymous sites could be strong, this is the first study to detect and quantify strong selection specifically at the level of CUB. Further, we find that CUB-associated polymorphism accounts for the majority of strong selection on synonymous sites, with secondary contributions of splicing (selection on alternatively spliced genes, splice junctions, and spliceosome-bound sites) and transcription factor binding. Our findings support a new model of CUB and indicate that the functional importance of CUB, as well as synonymous sites in general, have been underestimated.


Subject(s)
Codon Usage/genetics , Metagenomics/methods , Selection, Genetic/genetics , Animals , Codon/genetics , Codon Usage/physiology , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Evolution, Molecular , Genomics/methods , Introns/genetics , Models, Genetic , Polymorphism, Genetic/genetics , RNA Splicing/genetics
11.
Cell Stem Cell ; 27(2): 326-335.e4, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32673568

ABSTRACT

DNA methyltransferase 3A (DNMT3A) is the most commonly mutated gene in clonal hematopoiesis (CH). Somatic DNMT3A mutations arise in hematopoietic stem cells (HSCs) many years before malignancies develop, but difficulties in comparing their impact before malignancy with wild-type cells have limited the understanding of their contributions to transformation. To circumvent this limitation, we derived normal and DNMT3A mutant lymphoblastoid cell lines from a germline mosaic individual in whom these cells co-existed for nearly 6 decades. Mutant cells dominated the blood system, but not other tissues. Deep sequencing revealed similar mutational burdens and signatures in normal and mutant clones, while epigenetic profiling uncovered the focal erosion of DNA methylation at oncogenic regulatory regions in mutant clones. These regions overlapped with those sensitive to DNMT3A loss after DNMT3A ablation in HSCs and in leukemia samples. These results suggest that DNMT3A maintains a conserved DNA methylation pattern, the erosion of which provides a distinct competitive advantage to hematopoietic cells.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , Hematopoiesis , Clone Cells , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Epigenesis, Genetic , Hematopoiesis/genetics , Mutation/genetics
12.
Integr Comp Biol ; 49(6): 644-59, 2009 Dec.
Article in English | MEDLINE | ID: mdl-21665847

ABSTRACT

Modern genomic approaches have facilitated great progress in our understanding of the molecular and genetic underpinnings of ecological and evolutionary processes. Analysis of gene expression through heterologous hybridization in particular has enabled genome-scale studies in many ecologically and evolutionarily interesting species. However, these studies have been hampered by the difficulty of comparing-on a common array platform-gene-expression profiles across species due to sequence divergence altering the dynamics of hybridization. All too often, comparisons of expression profiles across species were limited to contrasting lists of gene or even of just functional categories. Here we review these issues and propose a novel solution. Exploiting the diverse cichlid lineages of East Africa as our model-system, we then present results from an experimental case study that compares the neural gene-expression profiles of males and females of two species that differ in mating system. Using a single microarray platform that contains genes from one species, Astatotilapia burtoni, we conducted a total of 16 direct comparisons for neural gene-expression level between individual males and females from a pair of sister species, the polygynous Enantiopus melanogenys and the monogamous Xenotilapia flavipinnis. Next, we conducted a meta-analysis with previously published data from two different intra-specific expression studies to determine whether sex-specific neural gene expression is more closely associated with behavioral phenotype than it is with gonadal sex. Our results indicate that the gene expression profiles are species-specific to a large extent, as relatively few genes show conserved expression patterns associated with either sex. Finally, we describe how competitive genomic DNA hybridizations between the two focal species allow us to assess the degree to which divergence of sequences biases the results. We propose a masking technique that correlates interspecific expression ratios obtained with cDNA with hybridization ratios obtained with genomic DNA for the same set of species and determines threshold sequence divergence to reduce false positives. Our approach should be applicable to a wide range of interesting questions related to the evolution and ecology of gene expression.

SELECTION OF CITATIONS
SEARCH DETAIL