Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cardiovasc Diabetol ; 22(1): 214, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37592236

ABSTRACT

BACKGROUND: Cardiac steatosis is an early yet overlooked feature of diabetic cardiomyopathy. There is no available therapy to treat this condition. Tyrosine kinase inhibitors (TKIs) are used as first or second-line therapy in different types of cancer. In cancer patients with diabetes mellitus, TKIs reportedly improved glycemic control, allowing insulin discontinuation. They also reduced liver steatosis in a murine model of non-alcoholic fatty liver disease. The present study aimed to determine the therapeutic effect of the second-generation TKI Dasatinib on lipid accumulation and cardiac function in obese, type 2 diabetic mice. We also assessed if the drug impacts extra-cardiac fat tissue depots. METHODS: Two studies on 21-week-old male obese leptin receptor mutant BKS.Cg-+Leprdb/+Leprdb/OlaHsd (db/db) mice compared the effect of Dasatinib (5 mg/kg) and vehicle (10% DMSO + 90% PEG-300) given via gavage once every three days for a week or once every week for four weeks. Functional and volumetric indices were studied using echocardiography. Post-mortem analyses included the assessment of fat deposits and fibrosis using histology, and senescence using immunohistochemistry and flow cytometry. The anti-adipogenic action of Dasatinib was investigated on human bone marrow (BM)-derived mesenchymal stem cells (MSCs). Unpaired parametric or non-parametric tests were used to compare two and multiple groups as appropriate. RESULTS: Dasatinib reduced steatosis and fibrosis in the heart of diabetic mice. The drug also reduced BM adiposity but did not affect other fat depots. These structural changes were associated with improved diastolic indexes, specifically the E/A ratio and non-flow time. Moreover, Dasatinib-treated mice had lower levels of p16 in the heart compared with vehicle-treated controls, suggesting an inhibitory impact of the drug on the senescence signalling pathway. In vitro, Dasatinib inhibited human BM-MSC viability and adipogenesis commitment. CONCLUSIONS: Our findings suggest that Dasatinib opposes heart and BM adiposity and cardiac fibrosis. In the heart, this was associated with favourable functional consequences, namely improvement in an index of diastolic function. Repurposing TKI for cardiac benefit could address the unmet need of diabetic cardiac steatosis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Humans , Male , Animals , Mice , Dasatinib/pharmacology , Protein Kinase Inhibitors/pharmacology , Fibrosis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy
2.
Diabetologia ; 65(5): 879-894, 2022 05.
Article in English | MEDLINE | ID: mdl-35211778

ABSTRACT

AIMS/HYPOTHESIS: Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important. Endothelial glycocalyx (eGlx) plays multiple vital roles in the microcirculation, including in the regulation of vascular permeability, and is compromised in diabetes but has not previously been studied in the coronary microcirculation in diabetes. We hypothesised that eGlx damage in the coronary microcirculation contributes to increased microvascular permeability and hence to cardiac dysfunction. METHODS: We investigated eGlx damage and cardiomyopathy in mouse models of type 1 (streptozotocin-induced) and type 2 (db/db) diabetes. Cardiac dysfunction was determined by echocardiography. We obtained eGlx depth and coverage by transmission electron microscopy (TEM) on mouse hearts perfusion-fixed with glutaraldehyde and Alcian Blue. Perivascular oedema was assessed from TEM images by measuring the perivascular space area. Lectin-based fluorescence was developed to study eGlx in paraformaldehyde-fixed mouse and human tissues. The eGlx of human conditionally immortalised coronary microvascular endothelial cells (CMVECs) in culture was removed with eGlx-degrading enzymes before measurement of protein passage across the cell monolayer. The mechanism of eGlx damage in the diabetic heart was investigated by quantitative reverse transcription-PCR array and matrix metalloproteinase (MMP) activity assay. To directly demonstrate that eGlx damage disturbs cardiac function, isolated rat hearts were treated with enzymes in a Langendorff preparation. Angiopoietin 1 (Ang1) is known to restore eGlx and so was used to investigate whether eGlx restoration reverses diastolic dysfunction in mice with type 1 diabetes. RESULTS: In a mouse model of type 1 diabetes, diastolic dysfunction (confirmed by echocardiography) was associated with loss of eGlx from CMVECs and the development of perivascular oedema, suggesting increased microvascular permeability. We confirmed in vitro that eGlx removal increases CMVEC monolayer permeability. We identified increased MMP activity as a potential mechanism of eGlx damage and we observed loss of syndecan 4 consistent with MMP activity. In a mouse model of type 2 diabetes we found a similar loss of eGlx preceding the development of diastolic dysfunction. We used isolated rat hearts to demonstrate that eGlx damage (induced by enzymes) is sufficient to disturb cardiac function. Ang1 restored eGlx and this was associated with reduced perivascular oedema and amelioration of the diastolic dysfunction seen in mice with type 1 diabetes. CONCLUSIONS/INTERPRETATION: The association of CMVEC glycocalyx damage with diastolic dysfunction in two diabetes models suggests that it may play a pathophysiological role and the enzyme studies confirm that eGlx damage is sufficient to impair cardiac function. Ang1 rapidly restores the CMVEC glycocalyx and improves diastolic function. Our work identifies CMVEC glycocalyx damage as a potential contributor to the development of DCM and therefore as a therapeutic target.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Angiopoietin-1/metabolism , Animals , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/metabolism , Endothelial Cells/metabolism , Glycocalyx/metabolism , Matrix Metalloproteinases/metabolism , Mice , Microcirculation , Rats
3.
Mol Ther ; 29(7): 2239-2252, 2021 07 07.
Article in English | MEDLINE | ID: mdl-33744469

ABSTRACT

MicroRNAs (miRNAs) regulate gene expression by post-transcriptional inhibition of target genes. Proangiogenic small extracellular vesicles (sEVs; popularly identified with the name "exosomes") with a composite cargo of miRNAs are secreted by cultured stem cells and present in human biological fluids. Lipid nanoparticles (LNPs) represent an advanced platform for clinically approved delivery of RNA therapeutics. In this study, we aimed to (1) identify the miRNAs responsible for sEV-induced angiogenesis; (2) develop the prototype of bioinspired "artificial exosomes" (AEs) combining LNPs with a proangiogenic miRNA, and (3) validate the angiogenic potential of the bioinspired AEs. We previously reported that human sEVs from bone marrow (BM)-CD34+ cells and pericardial fluid (PF) are proangiogenic. Here, we have shown that sEVs secreted from saphenous vein pericytes and BM mesenchymal stem cells also promote angiogenesis. Analysis of miRNA datasets available in-house or datamined from GEO identified the let-7 family as common miRNA signature of the proangiogenic sEVs. LNPs with either hsa-let-7b-5p or cyanine 5 (Cy5)-conjugated Caenorhabditis elegans miR-39 (Cy5-cel-miR-39; control miRNA) were prepared using microfluidic micromixing. let-7b-5p-AEs did not cause toxicity and transferred functionally active let-7b-5p to recipient endothelial cells (ECs). let-7b-AEs also improved EC survival under hypoxia and angiogenesis in vitro and in vivo. Bioinspired proangiogenic AEs could be further developed into innovative nanomedicine products targeting ischemic diseases.


Subject(s)
Exosomes/metabolism , Extracellular Vesicles/metabolism , Liposomes/chemistry , MicroRNAs/metabolism , Nanoparticles/chemistry , Neovascularization, Physiologic , Pericardial Fluid/physiology , Animals , Exosomes/genetics , Extracellular Vesicles/genetics , Human Umbilical Vein Endothelial Cells , Humans , In Vitro Techniques , Mice , MicroRNAs/genetics
4.
Clin Sci (Lond) ; 135(24): 2667-2689, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34807265

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a broad range of clinical responses including prominent microvascular damage. The capacity of SARS-CoV-2 to infect vascular cells is still debated. Additionally, the SARS-CoV-2 Spike (S) protein may act as a ligand to induce non-infective cellular stress. We tested this hypothesis in pericytes (PCs), which are reportedly reduced in the heart of patients with severe coronavirus disease-2019 (COVID-19). Here we newly show that the in vitro exposure of primary human cardiac PCs to the SARS-CoV-2 wildtype strain or the α and δ variants caused rare infection events. Exposure to the recombinant S protein alone elicited signalling and functional alterations, including: (1) increased migration, (2) reduced ability to support endothelial cell (EC) network formation on Matrigel, (3) secretion of pro-inflammatory molecules typically involved in the cytokine storm, and (4) production of pro-apoptotic factors causing EC death. Next, adopting a blocking strategy against the S protein receptors angiotensin-converting enzyme 2 (ACE2) and CD147, we discovered that the S protein stimulates the phosphorylation/activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) through the CD147 receptor, but not ACE2, in PCs. The neutralisation of CD147, either using a blocking antibody or mRNA silencing, reduced ERK1/2 activation, and rescued PC function in the presence of the S protein. Immunoreactive S protein was detected in the peripheral blood of infected patients. In conclusion, our findings suggest that the S protein may prompt PC dysfunction, potentially contributing to microvascular injury. This mechanism may have clinical and therapeutic implications.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Basigin/metabolism , Myocardium/enzymology , Pericytes/enzymology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/blood , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/blood , Caco-2 Cells , Cell Death , Child , Child, Preschool , Cytokines/metabolism , Female , Host-Pathogen Interactions , Humans , Infant , Infant, Newborn , Male , Middle Aged , Myocardium/cytology , Pericytes/virology , Primary Cell Culture , Young Adult
5.
Arterioscler Thromb Vasc Biol ; 40(1): 34-44, 2020 01.
Article in English | MEDLINE | ID: mdl-31510789

ABSTRACT

Diabetes mellitus increases the risk and accelerates the course of peripheral artery disease, making patients more susceptible to ischemic events and infections and delaying tissue healing. Current understanding of pathogenic mechanisms is mainly based on the negative influence of diabetes mellitus on atherosclerotic disease and inflammation. In recent years, the novel concept that diabetes mellitus can impinge on endogenous regenerative processes has been introduced. Diabetes mellitus affects regeneration at the local level, disturbing proper angiogenesis, collateral artery formation, and muscle repair. Recent evidence indicates that an impairment in vascular mural cells, alias pericytes, may participate in diabetic peripheral vasculopathy. Moreover, the bone marrow undergoes a global remodeling, consisting of microvessels and sensory neurons rarefaction and fat accumulation, which creates a hostile microenvironment for resident stem cells. Bone marrow remodeling is also responsible for detrimental systemic effects. In particular, the aid of reparative cells from the bone marrow is compromised: these elements are released in an improper manner and become harmful vectors of inflammatory and antiangiogenic molecules and noncoding RNAs. This new understanding of impaired regeneration is inspiring new therapeutic options for the treatment of ischemic complications in people with diabetes mellitus.


Subject(s)
Collateral Circulation/physiology , Diabetic Angiopathies , Genetic Therapy/methods , Muscle, Smooth, Vascular/pathology , Neovascularization, Physiologic , Oxidative Stress/physiology , Animals , Diabetic Angiopathies/diagnosis , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/therapy , Humans , Muscle, Smooth, Vascular/metabolism
6.
Eur Heart J ; 41(26): 2487-2497, 2020 07 07.
Article in English | MEDLINE | ID: mdl-31289820

ABSTRACT

AIMS: Here, we aimed to determine the therapeutic effect of longevity-associated variant (LAV)-BPIFB4 gene therapy on atherosclerosis. METHODS AND RESULTS: ApoE knockout mice (ApoE-/-) fed a high-fat diet were randomly allocated to receive LAV-BPIFB4, wild-type (WT)-BPIFB4, or empty vector via adeno-associated viral vector injection. The primary endpoints of the study were to assess (i) vascular reactivity and (ii) atherosclerotic disease severity, by Echo-Doppler imaging, histology and ultrastructural analysis. Moreover, we assessed the capacity of the LAV-BPIFB4 protein to shift monocyte-derived macrophages of atherosclerotic mice and patients towards an anti-inflammatory phenotype. LAV-BPIFB4 gene therapy rescued endothelial function of mesenteric and femoral arteries from ApoE-/- mice; this effect was blunted by AMD3100, a CXC chemokine receptor type 4 (CXCR4) inhibitor. LAV-BPIFB4-treated mice showed a CXCR4-mediated shift in the balance between Ly6Chigh/Ly6Clow monocytes and M2/M1 macrophages, along with decreased T cell proliferation and elevated circulating levels of interleukins IL-23 and IL-27. In vitro conditioning with LAV-BPIFB4 protein of macrophages from atherosclerotic patients resulted in a CXCR4-dependent M2 polarization phenotype. Furthermore, LAV-BPIFB4 treatment of arteries explanted from atherosclerotic patients increased the release of atheroprotective IL-33, while inhibiting the release of pro-inflammatory IL-1ß, inducing endothelial nitric oxide synthase phosphorylation and restoring endothelial function. Finally, significantly lower plasma BPIFB4 was detected in patients with pathological carotid stenosis (>25%) and intima media thickness >2 mm. CONCLUSION: Transfer of the LAV of BPIFB4 reduces the atherogenic process and skews macrophages towards an M2-resolving phenotype through modulation of CXCR4, thus opening up novel therapeutic possibilities in cardiovascular disease.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Aged , Animals , Apolipoproteins E , Atherosclerosis/genetics , Carotid Intima-Media Thickness , Female , Humans , Inflammation , Intercellular Signaling Peptides and Proteins , Longevity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Knockout, ApoE , Middle Aged , Phosphoproteins , Receptors, CXCR4
7.
Diabetologia ; 63(10): 2205-2217, 2020 10.
Article in English | MEDLINE | ID: mdl-32728894

ABSTRACT

AIMS/HYPOTHESIS: Treatment of vascular complications of diabetes remains inadequate. We reported that muscle pericytes (MPs) from limb muscles of vascular patients with diabetes mellitus display elevated levels of oxidative stress causing a dysfunctional phenotype. Here, we investigated whether treatment with dimethyl-2-oxoglutarate (DM-2OG), a tricarboxylic acid cycle metabolite with antioxidant properties, can restore a healthy metabolic and functional phenotype. METHODS: MPs were isolated from limb muscles of diabetes patients with vascular disease (D-MPs) and from non-diabetic control participants (ND-MPs). Metabolic status was assessed in untreated and DM-2OG-treated (1 mmol/l) cells using an extracellular flux analyser and anion-exchange chromatography-mass spectrometry (IC-MS/MS). Redox status was measured using commercial kits and IC-MS/MS, with antioxidant and metabolic enzyme expression assessed by quantitative RT-PCR and western blotting. Myogenic differentiation and proliferation and pericyte-endothelial interaction were assessed as functional readouts. RESULTS: D-MPs showed mitochondrial dysfunction, suppressed glycolytic activity and reduced reactive oxygen species-buffering capacity, but no suppression of antioxidant systems when compared with ND-MP controls. DM-2OG supplementation improved redox balance and mitochondrial function, without affecting glycolysis or antioxidant systems. Nonetheless, this was not enough for treated D-MPs to regain the level of proliferation and myogenic differentiation of ND-MPs. Interestingly, DM-2OG exerted a positive effect on pericyte-endothelial cell interaction in the co-culture angiogenesis assay, independent of the diabetic status. CONCLUSIONS/INTERPRETATION: These novel findings support the concept of using DM-2OG supplementation to improve pericyte redox balance and mitochondrial function, while concurrently allowing for enhanced pericyte-endothelial crosstalk. Such effects may help to prevent or slow down vasculopathy in skeletal muscles of people with diabetes. Graphical abstract.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Ketoglutaric Acids/pharmacology , Mitochondria/drug effects , Oxidation-Reduction/drug effects , Pericytes/drug effects , Adult , Case-Control Studies , Cell Culture Techniques , Female , Glycolysis/drug effects , Humans , Ischemia/metabolism , Male , Middle Aged , Mitochondria/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Pericytes/metabolism , Peripheral Vascular Diseases/metabolism , Reactive Oxygen Species/metabolism
8.
Diabetes Metab Res Rev ; 36 Suppl 1: e3240, 2020 03.
Article in English | MEDLINE | ID: mdl-31840418

ABSTRACT

Peripheral vascular complications are common in diabetic patients. While pathogenic mechanisms have received much consideration, only recently regenerative processes captured attention. There is now a consensus that the bone marrow is a source of reparative cells and that this healing mechanism is lost in people with diabetes, especially in those suffering from ischemic complications. This failure was thought to occur due to a negative impact of diabetes on the mobilization of stem/progenitor cells with angiogenic properties from the bone marrow to the circulation. Moreover, those patients showing severely reduced bone marrow cell mobilization also bared a very high risk for adverse cardiovascular events. More recently, the structural integrity of the bone marrow was recognized to be altered because of the rarefaction of local microvasculature and innervation, thus mirroring anatomical features that typically occur in peripheral tissues. Ensuing hypoxia, nutrient starvation, and creation of an acidic and oxidative environment concur in causing the depletion of stem/progenitor cells in the endosteal niche and in forcing stromal cells to activate an adipogenesis program. Moreover, stem/progenitor cells acquire a pathogenic phenotype and, once mobilized, can pass harmful signalling molecules to vascular cells of peripheral tissues thereby contributing to ischemic complications. These new pieces of evidence indicate that the bone marrow should deserve more attention in the current care of critical limb ischemia and diabetic foot. Owing to powerful reserve capacities, the bone marrow integrity could be preserved and even rescued using rehabilitation programs and pharmacological treatments with consequent benefit for local and whole-organism homeostasis.


Subject(s)
Bone Marrow Cells/pathology , Diabetes Mellitus/physiopathology , Diabetic Angiopathies/etiology , Diabetic Angiopathies/pathology , Humans
9.
Clin Sci (Lond) ; 134(8): 1031-1048, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32337536

ABSTRACT

Global trends in the prevalence of overweight and obesity put the adipocyte in the focus of huge medical interest. This review highlights a new topic in adipose tissue biology, namely the emerging pathogenic role of fat accumulation in bone marrow (BM). Specifically, we summarize current knowledge about the origin and function of BM adipose tissue (BMAT), provide evidence for the association of excess BMAT with diabetes and related cardiovascular complications, and discuss potential therapeutic approaches to correct BMAT dysfunction. There is still a significant uncertainty about the origins and function of BMAT, although several subpopulations of stromal cells have been suggested to have an adipogenic propensity. BM adipocytes are higly plastic and have a distinctive capacity to secrete adipokines that exert local and endocrine functions. BM adiposity is abundant in elderly people and has therefore been interpreted as a component of the whole-body ageing process. BM senescence and BMAT accumulation has been also reported in patients and animal models with Type 2 diabetes, being more pronounced in those with ischaemic complications. Understanding the mechanisms responsible for excess and altered function of BMAT could lead to new treatments able to preserve whole-body homeostasis.


Subject(s)
Bone Marrow/metabolism , Diabetes Mellitus/metabolism , Fats/metabolism , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Diabetes Mellitus/genetics , Humans
10.
Arterioscler Thromb Vasc Biol ; 39(6): 1113-1124, 2019 06.
Article in English | MEDLINE | ID: mdl-31018661

ABSTRACT

Objective- To determine the role of the oncofetal protein TPBG (trophoblast glycoprotein) in normal vascular function and reparative vascularization. Approach and Results- Immunohistochemistry of human veins was used to show TPBG expression in vascular smooth muscle cells and adventitial pericyte-like cells (APCs). ELISA, Western blot, immunocytochemistry, and proximity ligation assays evidenced a hypoxia-dependent upregulation of TPBG in APCs not found in vascular smooth muscle cells or endothelial cells. This involves the transcriptional modulator CITED2 (Atypical chemokine receptor 3 CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail) and downstream activation of CXCL12 (chemokine [C-X-C motif] ligand-12) signaling through the CXCR7 (C-X-C chemokine receptor type 7) receptor and ERK1/2 (extracellular signal-regulated kinases 1/2). TPBG silencing by siRNA transfection downregulated CXCL12, CXCR7, and pERK (phospho Thr202/Tyr204 ERK1/2) and reduced the APC migratory and proangiogenic capacities. TPBG forced expression induced opposite effects, which were associated with the formation of CXCR7/CXCR4 (C-X-C chemokine receptor type 4) heterodimers and could be contrasted by CXCL12 and CXCR7 neutralization. In vivo Matrigel plug assays using APCs with or without TPBG silencing evidenced TPBG is essential for angiogenesis. Finally, in immunosuppressed mice with limb ischemia, intramuscular injection of TPBG-overexpressing APCs surpassed naïve APCs in enhancing perfusion recovery and reducing the rate of toe necrosis. Conclusions- TPBG orchestrates the migratory and angiogenic activities of pericytes through the activation of the CXCL12/CXCR7/pERK axis. This novel mechanism could be a relevant target for therapeutic improvement of reparative angiogenesis.


Subject(s)
Cell Movement , Membrane Glycoproteins/metabolism , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Pericytes/metabolism , Saphenous Vein/metabolism , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Cells, Cultured , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Hindlimb , Humans , Ischemia/genetics , Ischemia/metabolism , Ischemia/physiopathology , Ischemia/surgery , Male , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Nude , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pericytes/transplantation , Phosphorylation , Receptors, CXCR/genetics , Receptors, CXCR/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism
11.
Diabetologia ; 62(7): 1275-1290, 2019 07.
Article in English | MEDLINE | ID: mdl-31001672

ABSTRACT

AIMS/HYPOTHESIS: Previous studies have shown that diabetes mellitus destabilises the integrity of the microvasculature in different organs by damaging the interaction between pericytes and endothelial cells. In bone marrow, pericytes exert trophic functions on endothelial cells and haematopoietic cells through paracrine mechanisms. However, whether bone marrow pericytes are a target of diabetes-induced damage remains unknown. Here, we investigated whether type 2 diabetes can affect the abundance and function of bone marrow pericytes. METHODS: We conducted an observational clinical study comparing the abundance and molecular/functional characteristics of CD146+ pericytes isolated from the bone marrow of 25 individuals without diabetes and 14 individuals with uncomplicated type 2 diabetes, referring to our Musculoskeletal Research Unit for hip reconstructive surgery. RESULTS: Immunohistochemistry revealed that diabetes causes capillary rarefaction and compression of arteriole size in bone marrow, without changing CD146+ pericyte counts. These data were confirmed by flow cytometry on freshly isolated bone marrow cells. We then performed an extensive functional and molecular characterisation of immunosorted CD146+ pericytes. Type 2 diabetes caused a reduction in pericyte proliferation, viability, migration and capacity to support in vitro angiogenesis, while inducing apoptosis. AKT is a key regulator of the above functions and its phosphorylation state is reportedly reduced in the bone marrow endothelium of individuals with diabetes. Surprisingly, we could not find a difference in AKT phosphorylation (at either Ser473 or Thr308) in bone marrow pericytes from individuals with and without diabetes. Nonetheless, the angiocrine signalling reportedly associated with AKT was found to be significantly downregulated, with lower levels of fibroblast growth factor-2 (FGF2) and C-X-C motif chemokine ligand 12 (CXCL12), and activation of the angiogenesis inhibitor angiopoietin 2 (ANGPT2). Transfection with the adenoviral vector carrying the coding sequence for constitutively active myristoylated AKT rescued functional defects and angiocrine signalling in bone marrow pericytes from diabetic individuals. Furthermore, an ANGPT2 blocking antibody restored the capacity of pericytes to promote endothelial networking. CONCLUSIONS/INTERPRETATION: This is the first demonstration of pericyte dysfunction in bone marrow of people with type 2 diabetes. An altered angiocrine signalling from pericytes may participate in bone marrow microvascular remodelling in individuals with diabetes.


Subject(s)
Bone Marrow Cells/pathology , Diabetes Mellitus, Type 2/pathology , Pericytes/pathology , Adult , Aged , Aged, 80 and over , Endothelial Cells/pathology , Female , Flow Cytometry , Humans , Immunohistochemistry , Male , Middle Aged , Signal Transduction/physiology
12.
Diabetologia ; 62(7): 1297-1311, 2019 07.
Article in English | MEDLINE | ID: mdl-31016359

ABSTRACT

AIMS/HYPOTHESIS: Sensory neuropathy is common in people with diabetes; neuropathy can also affect the bone marrow of individuals with type 2 diabetes. However, no information exists on the state of bone marrow sensory innervation in type 1 diabetes. Sensory neurons are trophically dependent on nerve growth factor (NGF) for their survival. The aim of this investigation was twofold: (1) to determine if sensory neuropathy affects the bone marrow in a mouse model of type 1 diabetes, with consequences for stem cell liberation after tissue injury; and (2) to verify if a single systemic injection of the NGF gene exerts long-term beneficial effects on these phenomena. METHODS: A mouse model of type 1 diabetes was generated in CD1 mice by administration of streptozotocin; vehicle was administered to non-diabetic control animals. Diabetic animals were randomised to receive systemic gene therapy with either human NGF or ß-galactosidase. After 13 weeks, limb ischaemia was induced in both groups to study the recovery post injury. When the animals were killed, samples of tissue and peripheral blood were taken to assess stem cell mobilisation and homing, levels of substance P and muscle vascularisation. An in vitro cellular model was adopted to verify signalling downstream to human NGF and related neurotrophic or pro-apoptotic effects. Normally distributed variables were compared between groups using the unpaired Student's t test and non-normally distributed variables were assessed by the Wilcoxon-Mann-Whitney test. The Fisher's exact test was employed for categorical variables. RESULTS: Immunohistochemistry indicated a 3.3-fold reduction in the number of substance P-positive nociceptive fibres in the bone marrow of type 1 diabetic mice (p < 0.001 vs non-diabetic). Moreover, diabetes abrogated the creation of a neurokinin gradient which, in non-diabetic mice, favoured the mobilisation and homing of bone-marrow-derived stem cells expressing the substance P receptor neurokinin 1 receptor (NK1R). Pre-emptive gene therapy with NGF prevented bone marrow denervation, contrasting with the inhibitory effect of diabetes on the mobilisation of NK1R-expressing stem cells, and restored blood flow recovery from limb ischaemia. In vitro hNGF induced neurite outgrowth and exerted anti-apoptotic actions on rat PC12 cells exposed to high glucose via activation of the canonical neurotrophic tyrosine kinase receptor type 1 (TrkA) signalling pathway. CONCLUSIONS/INTERPRETATION: This study shows, for the first time, the occurrence of sensory neuropathy in the bone marrow of type 1 diabetic mice, which translates into an altered modulation of substance P and depressed release of substance P-responsive stem cells following ischaemia. NGF therapy improves bone marrow sensory innervation, with benefits for healing on the occurrence of peripheral ischaemia. Nociceptors may represent a new target for the treatment of ischaemic complications in diabetes.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Genetic Therapy/methods , Nerve Growth Factor/metabolism , Sensory Receptor Cells/cytology , Stem Cells/cytology , Animals , Bone Marrow , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 1/metabolism , Immunohistochemistry , Ischemia/therapy , Male , Mice , Sensory Receptor Cells/metabolism , Stem Cells/metabolism
13.
Diabetologia ; 62(7): 1315, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31115642

ABSTRACT

Unfortunately, three errors were made in the conversion of HbA1c to per cent values.

14.
Stem Cells ; 36(9): 1295-1310, 2018 09.
Article in English | MEDLINE | ID: mdl-29732653

ABSTRACT

Coronary artery disease (CAD) is the single leading cause of death worldwide. Advances in treatment and management have significantly improved patient outcomes. On the other hand, although mortality rates have decreased, more people are left with sequelae that require additional treatment and hospitalization. Moreover, patients with severe nonrevascularizable CAD remain with only the option of heart transplantation, which is limited by the shortage of suitable donors. In recent years, cell-based regenerative therapy has emerged as a possible alternative treatment, with several regenerative medicinal products already in the clinical phase of development and others emerging as competitive preclinical solutions. Recent evidence indicates that pericytes, the mural cells of blood microvessels, represent a promising therapeutic candidate. Pericytes are abundant in the human body, play an active role in angiogenesis, vessel stabilization and blood flow regulation, and possess the capacity to differentiate into multiple cells of the mesenchymal lineage. Moreover, early studies suggest a robustness to hypoxic insult, making them uniquely equipped to withstand the ischemic microenvironment. This review summarizes the rationale behind pericyte-based cell therapy and the progress that has been made toward its clinical application. We present the different sources of pericytes and the case for harvesting them from tissue leftovers of cardiovascular surgery. We also discuss the healing potential of pericytes in preclinical animal models of myocardial ischemia (MI) and current practices to upgrade the production protocol for translation to the clinic. Standardization of these procedures is of utmost importance, as lack of uniformity in cell manufacturing may influence clinical outcome. Stem Cells 2018;36:1295-1310.


Subject(s)
Pericytes/physiology , Regenerative Medicine/methods , Animals , Humans
15.
Mol Ther ; 26(12): 2823-2837, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30274787

ABSTRACT

MicroRNAs regulate endothelial function and angiogenesis, but their implication in pericyte biology remains undetermined. A PCR array, covering a panel of 379 human microRNAs, showed microRNA-532-5p to be one of the most differentially modulated by hypoxia, which was confirmed by qPCR in both skeletal muscle and adventitial pericytes. Furthermore, microRNA-532-5p was upregulated in murine muscular pericytes early after experimentally induced ischemia, decreasing below baseline after reperfusion. Transfection of human pericytes with anti-microRNA, microRNA-mimic, or controls indicates microRNA-532-5p modulates pro-angiogenic activity via transcriptional regulation of angiopoietin-1. Tie-2 blockade abrogated the ability of microRNA-532-5p-overexpressing pericytes to promote endothelial network formation in vitro. However, angiopoietin-1 is not a direct target of microRNA-532-5p. In silico analysis of microRNA-532-5p inhibitory targets associated with angiopoietin-1 transcription indicated three potential candidates, BACH1, HIF1AN, and EGLN1. Binding of microRNA-532-5p to the BACH1 3' UTR was confirmed by luciferase assay. MicroRNA-532-5p silencing increased BACH1, while a microRNA-532-5p mimic decreased expression. Silencing of BACH1 modulated angiopoietin-1 gene and protein expression. ChIP confirmed BACH1 transcriptional regulation of angiopoietin-1 promoter. Finally, microRNA-532-5p overexpression increased pericyte coverage in an in vivo Matrigel assay, suggesting its role in vascular maturation. This study provides a new mechanistic understanding of the transcriptional program orchestrating angiopoietin-1/Tie-2 signaling in human pericytes.


Subject(s)
Angiopoietin-1/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation , MicroRNAs/genetics , Pericytes/metabolism , RNA Interference , Autocrine Communication , Biomarkers , Gene Expression Profiling , Genes, Reporter , Humans , Hypoxia , Paracrine Communication , Phenotype , Transcriptome
16.
Mol Ther ; 26(7): 1694-1705, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29908843

ABSTRACT

Therapies based on circulating proangiogenic cells (PACs) have shown promise in ischemic disease models but require further optimization to reach the bedside. Ischemia-associated hypoxia robustly increases microRNA-210 (miR-210) expression in several cell types, including endothelial cells (ECs). In ECs, miR-210 represses EphrinA3 (EFNA3), inducing proangiogenic responses. This study provides new mechanistic evidences for a role of miR-210 in PACs. PACs were obtained from either adult peripheral blood or cord blood. miR-210 expression was modulated with either an inhibitory complementary oligonucleotide (anti-miR-210) or a miRNA mimic (pre-miR-210). Scramble and absence of transfection served as controls. As expected, hypoxia increased miR-210 in PACs. In vivo, migration toward and adhesion to the ischemic endothelium facilitate the proangiogenic actions of transplanted PACs. In vitro, PAC migration toward SDF-1α/CXCL12 was impaired by anti-miR-210 and enhanced by pre-miR-210. Moreover, pre-miR-210 increased PAC adhesion to ECs and supported angiogenic responses in co-cultured ECs. These responses were not associated with changes in extracellular miR-210 and were abrogated by lentivirus-mediated EFNA3 overexpression. Finally, ex-vivo pre-miR-210 transfection predisposed PACs to induce post-ischemic therapeutic neovascularization and blood flow recovery in an immunodeficient mouse limb ischemia model. In conclusion, miR-210 modulates PAC functions and improves their therapeutic potential in limb ischemia.


Subject(s)
Bone Marrow Cells/cytology , Bone Marrow/physiology , Hindlimb/cytology , Ischemia/genetics , Ischemia/therapy , MicroRNAs/genetics , Neovascularization, Physiologic/physiology , Adult , Animals , Cell Line , Chemokine CXCL12/genetics , Endothelial Cells/cytology , Female , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/genetics , Neovascularization, Physiologic/genetics , Transfection/methods
17.
Pharmacol Res ; 127: 101-109, 2018 01.
Article in English | MEDLINE | ID: mdl-28578204

ABSTRACT

Clinical data and basic research indicate that the structural and functional alterations that characterize the evolution of cardiac disease towards heart failure may be, at least in part, reversed. This paradigm shift is due to the accumulation of evidence indicating that, in peculiar settings, cardiomyocytes may be replenished. Moving from the consideration that cardiomyocytes are rapidly withdrawn from the cell cycle after birth, independent laboratories have tested the hypothesis that cardiac resident stem/progenitor cells resided in mammalian hearts and were important for myocardial repair. After almost two decades of intensive investigation, several (but partially overlapping) cardiac resident stem/progenitor cell populations have been identified. These primitive cells are characterized by mesenchymal features, unique properties that distinguish them from mesodermal progenitors residing in other tissues, and heterogeneous embryological origins (that include the neural crest and the epicardium). A further layer of complexity is related to the nature, in vivo localization and properties of mesodermal progenitors residing in adult tissues. Intriguingly, these latter, whose possible perivascular pericyte/mural cell origin has been shown, have been identified in human hearts too. However, their exact anatomical localization, pathophysiological role, and their relationship with cardiac stem/progenitor cells are emerging only recently. Therefore, aim of this review is to discuss the different origin, the distinct nature, and the complementary effect of cardiac stem cells and pericytes supporting regenerative strategies based on the combined use of both myogenic and angiogenic factors.


Subject(s)
Heart Failure/physiopathology , Pericytes/physiology , Regeneration/physiology , Stem Cells/physiology , Animals , Heart Failure/pathology , Humans , Pericytes/cytology , Stem Cells/cytology
18.
Circ Res ; 116(10): e81-94, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25801898

ABSTRACT

RATIONALE: Optimization of cell therapy for cardiac repair may require the association of different cell populations with complementary activities. OBJECTIVE: Compare the reparative potential of saphenous vein-derived pericytes (SVPs) with that of cardiac stem cells (CSCs) in a model of myocardial infarction, and investigate whether combined cell transplantation provides further improvements. METHODS AND RESULTS: SVPs and CSCs were isolated from vein leftovers of coronary artery bypass graft surgery and discarded atrial specimens of transplanted hearts, respectively. Single or dual cell therapy (300 000 cells of each type per heart) was tested in infarcted SCID (severe combined immunodeficiency)-Beige mice. SVPs and CSCs alone improved cardiac contractility as assessed by echocardiography at 14 days post myocardial infarction. The effect was maintained, although attenuated at 42 days. At histological level, SVPs and CSCs similarly inhibited infarct size and interstitial fibrosis, SVPs were superior in inducing angiogenesis and CSCs in promoting cardiomyocyte proliferation and recruitment of endogenous stem cells. The combination of cells additively reduced the infarct size and promoted vascular proliferation and arteriogenesis, but did not surpass single therapies with regard to contractility indexes. SVPs and CSCs secrete similar amounts of hepatocyte growth factor, vascular endothelial growth factor, fibroblast growth factor, stem cell factor, and stromal cell-derived factor-1, whereas SVPs release higher quantities of angiopoietins and microRNA-132. Coculture of the 2 cell populations results in competitive as well as enhancing paracrine activities. In particular, the release of stromal cell-derived factor-1 was synergistically augmented along with downregulation of stromal cell-derived factor-1-degrading enzyme dipeptidyl peptidase 4. CONCLUSIONS: Combinatory therapy with SVPs and CSCs may complementarily help the repair of infarcted hearts.


Subject(s)
Myocardial Infarction/surgery , Myocardium/pathology , Myocytes, Cardiac/transplantation , Neovascularization, Physiologic , Pericytes/transplantation , Regeneration , Stem Cell Transplantation , Angiogenic Proteins/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Fibrosis , Hemodynamics , Humans , Mice, SCID , Myocardial Contraction , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Paracrine Communication , Pericytes/metabolism , Phenotype , Recovery of Function , Saphenous Vein/cytology , Time Factors , Ventricular Remodeling
19.
Circ Res ; 117(4): 333-45, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26034043

ABSTRACT

RATIONALE: Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. OBJECTIVE: Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. METHODS AND RESULTS: We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. CONCLUSIONS: Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes.


Subject(s)
Endothelial Progenitor Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Longevity/genetics , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Phosphoproteins/genetics , Phosphoproteins/metabolism , 14-3-3 Proteins/metabolism , Age Factors , Aged , Aged, 80 and over , Animals , Blood Pressure , Cell Movement , Disease Models, Animal , Europe , Female , Genetic Association Studies , Genetic Therapy , Genotype , HEK293 Cells , HSP90 Heat-Shock Proteins/metabolism , Hindlimb , Humans , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/therapy , Intercellular Signaling Peptides and Proteins , Ischemia/genetics , Ischemia/metabolism , Ischemia/physiopathology , Ischemia/therapy , Male , Mice, Inbred C57BL , Middle Aged , Nitric Oxide Synthase Type III/metabolism , Phenotype , Phosphorylation , RNA Interference , Rats, Inbred SHR , Signal Transduction , Stress, Mechanical , Transfection , United States , Vasodilation , eIF-2 Kinase/metabolism
20.
Br Med Bull ; 118(1): 127-37, 2016 06.
Article in English | MEDLINE | ID: mdl-27298231

ABSTRACT

INTRODUCTION: Cell therapy is a growing area of research as an alternative to pharmaceuticals or surgery for the treatment of ischaemic disease. Studies are focusing on delivering tissue-derived cells into damaged organs to promote vascular regeneration or gain of function. SOURCES OF DATA: Pubmed, clinicaltrials.gov, BHF website. AREAS OF AGREEMENT: Stem cells have the potential to become a viable treatment for many diseases, as indicated by the numerous pre-clinical studies demonstrating therapeutic benefit. AREAS OF CONTROVERSY: The mechanisms of action for transplanted stem cells are still open to debate. Proposed mechanism includes direct cell incorporation and paracrine action. Additionally, the secretome produced by transplanted cells remains largely unknown. GROWING POINTS: Initial studies focused on delivering stem cells by injection; however, current research is utilizing biomaterials to target cell delivery to specific areas. AREAS TIMELY FOR DEVELOPING RESEARCH: Whilst stem cell research in the laboratory is expanding rapidly, transition into clinical studies is hindered by the availability of equivalent clinical grade reagents.


Subject(s)
Extremities/blood supply , Ischemia/therapy , Stem Cell Transplantation , Tissue Engineering , Clinical Trials as Topic , Humans , Ischemia/physiopathology , Regeneration , Stem Cell Research , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL