Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Microb Pathog ; 193: 106743, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879138

ABSTRACT

Rhamnolipids, a major category of glycolipid biosurfactant, have recently gained enormous attention in medical field because of their relevance as effective antibacterial agents against a wide variety of pathogenic bacteria. Our previous studies have shown that rhamnolipids from an environmental isolate of Pseudomonas aeruginosa UKMP14T possess antibacterial, anti-adhesive and anti-biofilm activity against multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) pathogens. However, the mechanism of their antibacterial action remains unclear. Thus, this study aimed to elucidate the mechanism of the antibacterial action of P. aeruginosa UKMP14T rhamnolipids by studying the changes in cells of one of the ESKAPE pathogens, Acinetobacter baumannii, which is the most difficult strain to kill. Results revealed that rhamnolipid treatment rendered A. baumannii cells more hydrophobic as evaluated through contact angle measurements. It also induced the release of cellular proteins measuring 510 µg/mL at a rhamnolipid concentration of 1000 µg/mL. In addition, rhamnolipids were found to be bactericidal in their action as they could permeate the inner membranes, leading to a leak-out of nucleotides. More than 50 % of the cells were found to be killed upon 1000 µg/mL rhamnolipid treatment as observed through fluorescence microscopy. Other cellular changes such as irregular shape and size, membrane perturbations, clumping, shrinkage and physical damage were clearly visible in SEM, FESEM and laser micrographs. Furthermore, rhamnolipid treatment inhibited the levels of acyl-homoserine lactones (AHLs) in A. baumannii, which are vital for their biofilm formation and virulence. The obtained results indicate that P. aeruginosa UKMP14T rhamnolipids target outer and inner bacterial membranes through permeation, including physical damage to the cells, leading to cell leakage. Furthermore, AHL inhibition appears to be the mechanism behind their anti-biofilm action. All these observations can be correlated to rhamnolipids' antibacterial effect against A. baumannii.

2.
J Appl Microbiol ; 134(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37757470

ABSTRACT

AIMS: This study aimed to investigate the effect of palm oil mill effluent (POME) final discharge on the active bacterial composition, gene expression, and metabolite profiles in the receiving rivers to establish a foundation for identifying potential biomarkers for monitoring POME pollution in rivers. METHODS AND RESULTS: The POME final discharge, upstream (unpolluted by POME), and downstream (effluent receiving point) parts of the rivers from two sites were physicochemically characterized. The taxonomic and gene profiles were then evaluated using de novo metatranscriptomics, while the metabolites were detected using qualitative metabolomics. A similar bacterial community structure in the POME final discharge samples from both sites was recorded, but their composition varied. Redundancy analysis showed that several families, particularly Comamonadaceae and Burkholderiaceae [Pr(>F) = 0.028], were positively correlated with biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results also showed significant enrichment of genes regulating various metabolisms in the POME-receiving rivers, with methane, carbon fixation pathway, and amino acids among the predominant metabolisms identified (FDR < 0.05, PostFC > 4, and PPDE > 0.95). This was further validated through qualitative metabolomics, whereby amino acids were detected as the predominant metabolites. CONCLUSIONS: The results suggest that genes regulating amino acid metabolism have significant potential for developing effective biomonitoring and bioremediation strategies in river water influenced by POME final discharge, fostering a sustainable palm oil industry.


Subject(s)
Industrial Waste , Plant Oils , Amino Acids/metabolism , Industrial Waste/analysis , Metabolome , Palm Oil , Plant Oils/chemistry , Waste Disposal, Fluid/methods , Water/analysis
3.
Environ Monit Assess ; 195(2): 264, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36600083

ABSTRACT

Waterborne diseases due to pathogen contamination in water are a serious problem all over the world. Accurate and simultaneous detection of pathogens in water is important to protect public health. In this study, we developed a method to simultaneously detect various pathogenic Escherichia coli by sequencing the amplicons of multiplex PCR. Our newly designed multiplex PCR amplified five genes for pathogenic E. coli (uidA, stx1, stx2, STh gene, and LT gene). Additional two PCR assays (for aggR and eae) were also designed and included in the amplicon sequencing analysis. The same assays were also used for digital PCR (dPCR). Strong positive correlations were observed between the sequence read count and the dPCR results for most of the genes targeted, suggesting that our multiplex PCR-amplicon sequencing approach could provide quantitative information. The method was also successfully applied to monitor the level of pathogenic E. coli in river water and wastewater samples. The approach shown here could be expanded by targeting genes for other pathogens.


Subject(s)
Escherichia coli , Multiplex Polymerase Chain Reaction , Water Microbiology , Environmental Monitoring/methods , Escherichia coli/genetics , Escherichia coli/pathogenicity , Multiplex Polymerase Chain Reaction/methods
4.
Arch Microbiol ; 204(10): 627, 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36114886

ABSTRACT

Although Escherichia coli has four hydrogenases, their definite roles in fermentation are still not clear. In this study, all the operon deletion mutants of E.coli hydrogenases (∆hya, ∆hyb, ∆hyc, or ∆hyf) were constructed to evaluate the hydrogen metabolism in comparison to their respective single-gene deletion mutants of large subunits (∆hyaB, ∆hybC, ∆hycE, and ∆hyfG). Besides the hyc operon mutant that expectedly showed no hydrogen synthesis, the hyb operon mutant showed low hydrogen production and demonstrated significantly reduced growth under anaerobic conditions. The present work also provided first-hand data where deleterious effects of operon deletion were compared with single-gene deletion mutations and the results showed that the former type of deletion was found to cause more prominent phenotypic effects than the latter one. Interestingly, hyb operon mutant was remarkably distinct from other operon mutants, specifically in its inability to utilize glucose under both aerobic and anaerobic conditions. Further studies on this mutant revealed a significant reduction of the total intracellular ATP and NADH concentrations, which could explain its impaired glucose metabolism. In this way, Hyd-2 was verified as crucial not only in glucose metabolism but also in energy balance and redox homeostasis of the cells. Furthermore, a decreased expression of glucose metabolism-associated genes, particularly ppc and pykA, indicated their regulation by hyb operon, and thereby, glucose consumption. Moreover, the transcriptional changes in this mutant indicated the wide genomic connectivity of hyb operon to other metabolisms.


Subject(s)
Escherichia coli/enzymology , Hydrogenase , Adenosine Triphosphate/metabolism , Escherichia coli/genetics , Glucose/metabolism , Hydrogenase/genetics , Hydrogenase/metabolism , NAD/metabolism , Operon
5.
Appl Microbiol Biotechnol ; 106(12): 4763-4774, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35715650

ABSTRACT

The ubiquitous signaling molecule autoinducer 2 (AI-2) is involved in intra- and interspecies communication, most notably between Gram-negative and Gram-positive bacteria. AI-2 accumulates during the exponential phase of the Escherichia coli (E. coli) monoculture and then rapidly decreases upon entry into the stationary phase. However, deleting both the genes encoding AI-2 synthase (LuxS) and the lsr operon regulator (LsrR) in the E. coli genome causes impaired AI-2 production and continuous AI-2 scavenging from the environment. This genetically-engineered E. coli mutant capable of quenching AI-2 quorum sensing (QS) system was utilized to evaluate the effect of AI-2 quenching on the anaerobic digestion of waste activated sludge (WAS) because the role of QS system via AI-2 in the process remains obscure. In this study, E. coli ∆luxS lsrR mutant cells were microencapsulated in sodium alginate beads and incubated with WAS anaerobically. After 15 days of anaerobic fermentation, the WAS containing double mutant cells produced significantly more methane than that of the parent E. coli cells. AI-2 quenching occurred concurrently with a shift of microbial communities that contribute to increasing acetate consumption by the Methanosarcina spp. resulting in an increase in methane production. KEY POINTS: • Impact of autoinducer 2 quenching in complex bacterial populations were determined. • Key microorganisms contributing to the increase of methane in WAS anaerobic digestion were found. • The AI-2 quenching is a potential regulatory in wastewater treatment and bioenergy research.


Subject(s)
Quorum Sensing , Sewage , Anaerobiosis , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Homoserine/analogs & derivatives , Homoserine/metabolism , Lactones , Methane , Sewage/microbiology
6.
J Basic Microbiol ; 62(8): 948-962, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35739617

ABSTRACT

Escherichia coli K-12, being one of the best understood and thoroughly analyzed organisms, is the preferred platform for genetic and biochemical research. Among all genetic engineering approaches applied on E. coli, the homologous recombination approach is versatile and precise, which allows engineering genes or large segments of the chromosome directly by using polymerase chain reaction (PCR) products or synthetic oligonucleotides. The previously explained approaches for random insertion and deletions were reported as technically not easy and laborious. This study, first, finds the minimum length of homology extension that is efficient and accurate for homologous recombination, as 30 nt. Second, proposes an approach utilizing PCR products flanking ambiguous NNN-sequence (30-nt) extensions, which facilitate the homologous recombination to recombine them at multiple regions on the genome and generate insertion-deletion mutations. Further analysis found that these mutations were varying in number, that is, multiple genomic regions were deleted. Moreover, evaluation of the phenotype of all the multiple random insertion-deletion mutants demonstrated no significant changes in the normal metabolism of bacteria. This study not only presents the efficiency of ambiguous sequences in making random deletion mutations, but also demonstrates their further applicability in genomics.


Subject(s)
Escherichia coli K12 , Escherichia coli , Escherichia coli/genetics , Escherichia coli K12/genetics , Genetic Engineering , Genomics , INDEL Mutation
7.
Int J Mol Sci ; 23(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36555835

ABSTRACT

The bacterial archetypal adaptive immune system, CRISPR-Cas, is thought to be repressed in the best-studied bacterium, Escherichia coli K-12. We show here that the E. coli CRISPR-Cas system is active and serves to inhibit its nine defective (i.e., cryptic) prophages. Specifically, compared to the wild-type strain, reducing the amounts of specific interfering RNAs (crRNA) decreases growth by 40%, increases cell death by 700%, and prevents persister cell resuscitation. Similar results were obtained by inactivating CRISPR-Cas by deleting the entire 13 spacer region (CRISPR array); hence, CRISPR-Cas serves to inhibit the remaining deleterious effects of these cryptic prophages, most likely through CRISPR array-derived crRNA binding to cryptic prophage mRNA rather than through cleavage of cryptic prophage DNA, i.e., self-targeting. Consistently, four of the 13 E. coli spacers contain complementary regions to the mRNA sequences of seven cryptic prophages, and inactivation of CRISPR-Cas increases the level of mRNA for lysis protein YdfD of cryptic prophage Qin and lysis protein RzoD of cryptic prophage DLP-12. In addition, lysis is clearly seen via transmission electron microscopy when the whole CRISPR-Cas array is deleted, and eliminating spacer #12, which encodes crRNA with complementary regions for DLP-12 (including rzoD), Rac, Qin (including ydfD), and CP4-57 cryptic prophages, also results in growth inhibition and cell lysis. Therefore, we report the novel results that (i) CRISPR-Cas is active in E. coli and (ii) CRISPR-Cas is used to tame cryptic prophages, likely through RNAi, i.e., unlike with active lysogens, active CRISPR-Cas and cryptic prophages may stably co-exist.


Subject(s)
Escherichia coli K12 , Prophages , Prophages/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , CRISPR-Cas Systems/genetics , Bacteria/genetics
8.
Int J Mol Sci ; 23(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35409097

ABSTRACT

While chemical fertilisers and pesticides indeed enhance agricultural productivity, their excessive usage has been detrimental to environmental health. In addressing this matter, the use of environmental microbiomes has been greatly favoured as a 'greener' alternative to these inorganic chemicals' application. Challenged by a significant proportion of unidentified microbiomes with unknown ecological functions, advanced high throughput metatranscriptomics is prudent to overcome the technological limitations in unfolding the previously undiscovered functional profiles of the beneficial microbiomes. Under this context, this review begins by summarising (1) the evolution of next-generation sequencing and metatranscriptomics in leveraging the microbiome transcriptome profiles through whole gene expression profiling. Next, the current environmental metatranscriptomics studies are reviewed, with the discussion centred on (2) the emerging application of the beneficial microbiomes in developing fertile soils and (3) the development of disease-suppressive soils as greener alternatives against biotic stress. As sustainable agriculture focuses not only on crop productivity but also long-term environmental sustainability, the second half of the review highlights the metatranscriptomics' contribution in (4) revolutionising the pollution monitoring systems via specific bioindicators. Overall, growing knowledge on the complex microbiome functional profiles is imperative to unlock the unlimited potential of agricultural microbiome-based practices, which we believe hold the key to productive agriculture and sustainable environment.


Subject(s)
Agriculture , Microbiota , Crop Production , Fertilizers , Microbiota/genetics , Soil
9.
Appl Microbiol Biotechnol ; 105(20): 7607-7618, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34542684

ABSTRACT

Anaerobic digestion of sewage sludge (SS) is one of the effective ways to reduce the waste generated from human life activities. To date, there are many reports to improve or repress methane production during the anaerobic digestion of SS. In the anaerobic digestion process, many microorganisms work positively or negatively, and as a result of their microbe-to-microbe interaction and regulation, methane production increases or decreases. In other words, understanding the complex control mechanism among the microorganisms and identifying the strains that are key to increase or decrease methane production are important for promoting the advanced production of bioenergy and beneficial compounds. In this mini-review, the literature on methane production in anaerobic digestion has been summarized based on the results of antibiotic addition, quorum sensing control, and inorganic substance addition. By optimizing the activity of microbial groups in SS, methane or acetate can be highly produced. KEY POINTS: • Bactericidal agents such as an antibiotic alter microbial community for enhanced CH4 production. • Bacterial interaction via quorum sensing is one of the key points for biofilm and methane production. • Anaerobic digestion can be altered in the presence of several inorganic materials.


Subject(s)
Bioreactors , Microbiota , Anaerobiosis , Anti-Bacterial Agents/pharmacology , Humans , Methane , Quorum Sensing , Sewage
10.
Appl Microbiol Biotechnol ; 105(9): 3787-3798, 2021 May.
Article in English | MEDLINE | ID: mdl-33856534

ABSTRACT

Because colony formation is essential to seek bacterial functions by the direct observation of phenotype, the diversification of colony formation for culturable bacteria is a big challenge in the research field of Environmental Biotechnology. In this study, the biodiversity of cultivable bacteria (colony or liquid culture) was compared by using Luria-Bertani (LB) medium and waste sewage sludge (WSS) under different dilutions and temperatures. When WSS was used as a bacterial source, whereas the highest number of colonies was found at the concentration of WSS (5%), a particular concentration of LB (10%) or WSS (1%) as a growth medium showed the best number of the operational taxonomic units (OTUs) of colonies. The results of bacterial community structure indicated that there are 1, 8, and 12 bacterial genera found uniquely in the agar plates of LB, 10% LB, and 5% WSS. By contrast, when palm oil mill effluent sludge was used as a bacterial source, the effect of dilution was different with WSS. When comparing the biodiversity between colonies and liquid culture, a high OTU value was observed in the colonies on the plate. In addition, 30°C showed the highest number of colonies in LB, 10% LB, and 5% WSS whereas the best OTUs were observed at 37°C for LB and 10% LB, and at 25°C for 5% WSS. This study demonstrates the diversification of cultivable bacteria through the number of OTUs in diluted LB medium and WSS, which is beneficial to isolate a unique bacterial strain.Key points• Impacts of diluted LB medium and WSS for colony formation were determined.• Difference of concentration of LB and WSS made different effects on colony formation.• Temperature change affected on diluted LB and WSS as media.


Subject(s)
Bacteria , Sewage , Agar , Bacteria/genetics , Biodiversity , Culture Media
11.
Arch Microbiol ; 202(3): 617-622, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31773196

ABSTRACT

The repurposing of gallium nitrate as an antibacterial, a drug used previously for the treatment of hypercalcemia, is a plausible alternative to combat infections by Pseudomonas aeruginosa, since it has antipseudomonal properties in vitro and in vivo in animal models and in human lung infections. Furthermore, gallium nitrate tolerance in clinical isolates is very rare. Nevertheless, studies on the reference strains PA14 and PAO1 show that resistance against gallium nitrate is achieved by decreasing gallium intracellular levels by increasing the production of pyocyanin. In this work, we induced resistance in a cystic fibrosis P. aeruginosa isolate and explored its resistance mechanisms. This isolated strain, INP-58M, was not a pyocyanin producer, and its pyoverdine levels remained unchanged upon gallium addition. However, it showed higher activities of NADPH-producing enzymes and the antioxidant enzyme SOD when gallium was added, which suggests a better antioxidant response. Remarkably, gallium intracellular levels in the resistant isolate were higher than those of the parental strain at 20 h but lower after 24 h of culture, suggesting that this strain is capable of gallium efflux.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cystic Fibrosis/microbiology , Gallium/pharmacology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Drug Repositioning , Drug Resistance, Bacterial , Humans , Oligopeptides/biosynthesis , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/metabolism , Pyocyanine/biosynthesis
12.
Appl Microbiol Biotechnol ; 103(3): 1485-1495, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30554390

ABSTRACT

Quorum sensing (QS) plays a key role in activating bacterial functions through small molecules called autoinducers. In this study, the QS of Gram-negative bacteria in waste sewage sludge (WSS) was downregulated by adding the quorum quenching enzyme, AiiM lactonase, which cleaved the acyl-homoserine lactone (AHL) autoinducer signals from Gram-negative bacteria, and subsequently methane production was inhibited by over 400%. The pH was lowered after 2 days in the anaerobic fermentation whereas protease activity at the hydrolysis step was almost the same with or without AiiM. The production of acetic acid significantly increased during the fermentation in the presence of AiiM. The bacterial community at day 2 indicated that the population of Gram-positive bacteria increased in the presence of AiiM, and the percentage of Gram-negative bacteria decreased in the WSS containing AiiM. The change in the bacterial community in the presence of AiiM may be due to the different antimicrobial agents produced in the WSS because some of the Gram-positive bacteria were killed by adding the solid-phase extraction (SPE) fraction from the WSS without AiiM. In contrast, the SPE fraction with AiiM had reduced bactericidal activity against Gram-negative bacteria. Thus, bacterial signaling between Gram-negative bacteria is critical for methane production by the microbial consortia.


Subject(s)
Anaerobiosis/physiology , Bioreactors/microbiology , Gram-Negative Bacteria/metabolism , Gram-Negative Bacteria/physiology , Methane/biosynthesis , Quorum Sensing/physiology , Sewage/microbiology , Water Purification/methods , Acyl-Butyrolactones/metabolism , Fermentation/physiology , Gram-Positive Bacteria/metabolism
13.
Appl Microbiol Biotechnol ; 102(5): 2041-2050, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29368215

ABSTRACT

Escherichia coli has been a robust host strain for much biological research, in particular, research in metabolic engineering, protein engineering, and heterologous gene expression. In this mini review, to understand bacterial hydrogen production by E. coli, the effect of glucose and glycerol metabolism on hydrogen production is compared, and the current approaches to enhance hydrogen production from glycerol as a substrate are reviewed. In addition, the argument from past to present on the functions of E. coli hydrogenases, hydrogenase 1, hydrogenase 2, hydrogenase 3, and hydrogenase 4 is summarized. Furthermore, based on the literature that the E. coli formate-hydrogen lyase is essential for bacterial hydrogen production via recombinant hydrogenases, research achievements from the past regarding heterologous production of hydrogenase are rethought.


Subject(s)
Escherichia coli/metabolism , Glucose/metabolism , Glycerol/metabolism , Hydrogen/metabolism , Hydrogenase/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Hydrogenase/genetics , Industrial Microbiology/trends , Metabolic Engineering
14.
Appl Microbiol Biotechnol ; 102(12): 5323-5334, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29696331

ABSTRACT

Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.


Subject(s)
Bioreactors/microbiology , Methane/biosynthesis , Sewage/microbiology , Anaerobiosis , Anti-Bacterial Agents/pharmacology , Archaea/drug effects , Bacteria/drug effects , Industrial Microbiology
15.
Appl Microbiol Biotechnol ; 100(21): 9355-9364, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27531514

ABSTRACT

Anaerobic digestion is an effective method for reducing the by-product of waste-activated sludge (WAS) from wastewater treatment plants and for producing bioenergy from WAS. However, only a limited number of studies have attempted to improve anaerobic digestion by targeting the microbial interactions in WAS. In this study, we examined whether different antibiotics positively, negatively, or neutrally influence methane fermentation by evaluating changes in the microbial community and functions in WAS. Addition of azithromycin promoted the microbial communities related to the acidogenic and acetogenic stages, and a high concentration of soluble proteins and a high activity of methanogens were detected. Chloramphenicol inhibited methane production but did not affect the bacteria that contribute to the hydrolysis, acidogenesis, and acetogenesis digestion stages. The addition of kanamycin, which exhibits the same methane productivity as a control (antibiotic-free WAS), did not affect all of the microbial communities during anaerobic digestion. This study demonstrates the simultaneous functions and interactions of diverse bacteria and methanogenic Archaea in different stages of the anaerobic digestion of WAS. The ratio of Caldilinea, Methanosarcina, and Clostridium may correspond closely to the trend of methane production in each antibiotic. The changes in microbial activities and function by antibiotics facilitate a better understanding of bioenergy production.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacteria/classification , Bacteria/drug effects , Biota/drug effects , Methane/metabolism , Sewage/microbiology , Anaerobiosis , Archaea/classification , Azithromycin/metabolism , Chloramphenicol/metabolism , Kanamycin/metabolism
16.
Appl Microbiol Biotechnol ; 99(6): 2573-81, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25567513

ABSTRACT

Glycerol is an inexpensive and abundant source for biofuel production on a large scale. Escherichia coli is a robust bacterium for producing hydrogen; however, its hydrogen productivity from glycerol is low. In this study, we conducted random transposon mutagenesis to identify uncharacterized genes whose inactivation is beneficial for hydrogen production from glycerol. Through screening, four mutant strains were found that are able to have from 1.3- to 1.6-fold higher hydrogen productivity (µmol H2/mg protein) than that of their parent strain (p < 0.05). These mutations were identified as aroM, gatZ, ycgR, and yfgI. The hydrogen yield (mol H2/mol glycerol consumed) of the aroM, gatZ, ycgR, and yfgI strains was 1.7-, 1.4-, 2.4-, and 2.1-fold higher than that of their parent strain, respectively. Moreover, a single disruption in these genes resulted in a faster cell growth and glycerol consumption under anaerobic conditions. In E. coli, AroM is predicted to be involved in the shikimate pathway, GatZ is tagatose-1,6-bisphosphate aldolase 2 which converts dihydroxyacetone phosphate to 1,6-biphosphate, and YcgR acts as a molecular brake limiting the swimming speed and ATP consumption. So far, the function of YfgI in general and in hydrogen production in particular remains unknown.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Glycerol/chemistry , Hydrogen/metabolism , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Biofuels , DNA Transposable Elements , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Fermentation , Gene Knockout Techniques , Mutagenesis , Sequence Analysis, DNA
17.
Appl Microbiol Biotechnol ; 98(10): 4757-70, 2014 May.
Article in English | MEDLINE | ID: mdl-24615384

ABSTRACT

Glycerol is an attractive carbon source for biofuel production since it is cheap and abundant due to the increasing demand for renewable and clean energy sources, which includes production of biodiesel. This research aims to enhance hydrogen production by Escherichia coli from glycerol by manipulating its metabolic pathways via targeted deletions. Since our past strain, which had been engineered for producing hydrogen from glucose, was not suitable for producing hydrogen from glycerol, we rescreened 14 genes related to hydrogen production and glycerol metabolism. We found that 10 single knockouts are beneficial for enhanced hydrogen production from glycerol, namely, frdC (encoding for furmarate reductase), ldhA (lactate dehydrogenase), fdnG (formate dehydrogenase), ppc (phosphoenolpyruvate carboxylase), narG (nitrate reductase), focA (formate transporter), hyaB (the large subunit of hydrogenase 1), aceE (pyruvate dehydrogenase), mgsA (methylglyoxal synthase), and hycA (a regulator of the transcriptional regulator FhlA). On that basis, we created multiple knockout strains via successive P1 transductions. Simultaneous knockouts of frdC, ldhA, fdnG, ppc, narG, mgsA, and hycA created the best strain that produced 5-fold higher hydrogen and had a 5-fold higher hydrogen yield than the parent strain. The engineered strain also reached the theoretical maximum yield of 1 mol H2/mol glycerol after 48 h. Under low partial pressure fermentation, the strain grew over 2-fold faster, indicating faster utilization of glycerol and production of hydrogen. By combining metabolic engineering and low partial pressure fermentation, hydrogen production from glycerol was enhanced significantly.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Glycerol/metabolism , Hydrogen/metabolism , Metabolic Engineering , Biofuels , Escherichia coli/growth & development , Fermentation , Gene Knockout Techniques , Metabolic Networks and Pathways , Time Factors
18.
J Ind Microbiol Biotechnol ; 41(7): 1051-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24793122

ABSTRACT

In the methane production from waste activated sludge (WAS), complex bacterial interactions in WAS have been known as a major contribution to methane production. Therefore, the influence of bacterial community changes toward methane production from WAS was investigated by an application of antibiotics as a simple means for it. In this study, azithromycin (Azm) as an antibiotic was mainly used to observe the effect on microbial changes that influence methane production from WAS. The results showed that at the end of fermentation, Azm enhanced methane production about twofold compared to control. Azm fostered the growth of acid-producing bacterial communities, which synthesized more precursors for methane formation. DGGE result showed that the hydrolysis as well as acetogenesis stage was improved by the dominant of B1, B2 and B3 strains, which are Clostridium species. In the presence of Azm, the total population of archaeal group was increased, resulting in higher methane productivity achievement.


Subject(s)
Azithromycin/pharmacology , Methane/biosynthesis , Sewage/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Bacteria/isolation & purification , Bacteria/metabolism , Fermentation/drug effects , Hydrolysis/drug effects , Microbial Viability/drug effects , Sewage/chemistry
19.
Microbiol Resour Announc ; : e0129623, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847525

ABSTRACT

The complete genome sequence of Bdellovibrio bacteriovorus 109J, a well-studied laboratory strain of predatory bacteria, first determined in 2014. Here we report an improved complete genome sequence of B. bacteriovorus 109J, incorporating 16 assembly and 87 nucleotide corrections. This revised genome will be helpful to studies on the predatory bacteria.

20.
Sci Rep ; 14(1): 3485, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347106

ABSTRACT

Despite the importance of methicillin-resistant Staphylococcus aureus (MRSA) as a priority nosocomial pathogen, the genome sequences of Malaysian MRSA isolates are currently limited to a small pool of samples. Here, we present the genome sequence analyses of 88 clinical MRSA isolates obtained from the main tertiary hospital in Terengganu, Malaysia in 2016-2020, to obtain in-depth insights into their characteristics. The EMRSA-15 (ST22-SCCmec IV) clone of the clonal complex 22 (CC22) lineage was predominant with a total of 61 (69.3%) isolates. Earlier reports from other Malaysian hospitals indicated the predominance of the ST239 clone, but only two (2.3%) isolates were identified in this study. Two Indian-origin clones, the Bengal Bay clone ST772-SCCmec V (n = 2) and ST672 (n = 10) were also detected, with most of the ST672 isolates obtained in 2020 (n = 7). Two new STs were found, with one isolate each, and were designated ST7879 and ST7883. From the core genome phylogenetic tree, the HSNZ MRSA isolates could be grouped into seven clades. Antimicrobial phenotype-genotype concordance was high (> 95%), indicating the accuracy of WGS in predicting most resistances. Majority of the MRSA isolates were found to harbor more than 10 virulence genes, demonstrating their pathogenic nature.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Niacinamide/analogs & derivatives , Staphylococcal Infections , Humans , Malaysia , Phylogeny , Tertiary Care Centers , Clone Cells , Whole Genome Sequencing , Anti-Bacterial Agents , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL