Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Cell Mol Med ; 27(3): 379-391, 2023 02.
Article in English | MEDLINE | ID: mdl-36625073

ABSTRACT

Endometrial cancer (EC) is the most common gynaecological malignancy with increasing incidence in developed countries. As gold standard, hysteroscopy confirms only 30% of suspected ECs. The detection of EC cells in the vagina by fluorescence in situ hybridization (FISH) after a smear test could reduce invasive procedures in the future. Using array-based comparative genome hybridization (aCGH) on 65 endometrial carcinomas, most frequently imbalanced regions of the tumour genome were identified. Bacterial artificial chromosomes were used to generate FISH-probes homologue to these human regions. The FISH test was hybridized on swabs specimens collected from the vaginal cavity. Samples from six patients without EC were selected as a negative control and on 13 patients with known EC as a positive control. To distinguish between benign and EC cases, the cut-off value has been defined. A first validation of this EC-FISH Test was performed with swabs from 41 patients with suspected EC. The most common genomic imbalances in EC are around the CTNNB1, FBXW7 and APC genes. The cut-off is defined at 32% of analysed cells without diploid signal pattern. This differs significantly between the positive and negative controls (p < 0.001). In a first validation cohort of 41 patients with suspected EC, the EC-FISH Test distinguishes patients with and without EC with a sensitivity of 91% and a specificity of 83%. The negative predictive value is 96%. This is the first report of a non-invasive EC-FISH Test to predict EC in women with suspected EC.


Subject(s)
Endometrial Neoplasms , Humans , Female , Sensitivity and Specificity , In Situ Hybridization, Fluorescence , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Predictive Value of Tests , Vagina
2.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139296

ABSTRACT

Ovarian cancer (OC) cells with homologous recombination deficiency (HRD) accumulate genomic scars (LST, TAI, and LOH) over a value of 42 in sum. PARP inhibitors can treat OC with HRD. The detection of HRD can be done directly by imaging these genomic scars, or indirectly by detecting mutations in the genes involved in HR. We show that HRD detection is also possible using high-resolution aCGH. A total of 30 OCs were analyzed retrospectively with high-resolution arrays as a test set and 19 OCs prospectively as a validation set. Mutation analysis was performed by HBOC TruRisk V2 panel to detect HR-relevant mutations. CNVs were clustered with respect to the involved HR genes versus the OC cases. In prospective validation, the HRD status determined by aCGH was compared with external HRD assessments. Two BRCA mutation carriers did not have HRD. OC could approximately differentiate into two groups with characteristic CNV patterns with different survival rates. Mutation frequencies have a linear regression on the HRD score. Mutations in individual HR-relevant genes do not always indicate HRD. This may depend on the mutation frequency in tumor cells. The aCGH shows the genomic scars of an HRD inexpensively and directly.


Subject(s)
Homologous Recombination , Ovarian Neoplasms , Humans , Female , Retrospective Studies , Comparative Genomic Hybridization , Cicatrix/pathology , Ovarian Neoplasms/pathology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL