Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Proc Natl Acad Sci U S A ; 121(4): e2308942121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38241441

ABSTRACT

In the Antibody Mediated Prevention (AMP) trials (HVTN 704/HPTN 085 and HVTN 703/HPTN 081), prevention efficacy (PE) of the monoclonal broadly neutralizing antibody (bnAb) VRC01 (vs. placebo) against HIV-1 acquisition diagnosis varied according to the HIV-1 Envelope (Env) neutralization sensitivity to VRC01, as measured by 80% inhibitory concentration (IC80). Here, we performed a genotypic sieve analysis, a complementary approach to gaining insight into correlates of protection that assesses how PE varies with HIV-1 sequence features. We analyzed HIV-1 Env amino acid (AA) sequences from the earliest available HIV-1 RNA-positive plasma samples from AMP participants diagnosed with HIV-1 and identified Env sequence features that associated with PE. The strongest Env AA sequence correlate in both trials was VRC01 epitope distance that quantifies the divergence of the VRC01 epitope in an acquired HIV-1 isolate from the VRC01 epitope of reference HIV-1 strains that were most sensitive to VRC01-mediated neutralization. In HVTN 704/HPTN 085, the Env sequence-based predicted probability that VRC01 IC80 against the acquired isolate exceeded 1 µg/mL also significantly associated with PE. In HVTN 703/HPTN 081, a physicochemical-weighted Hamming distance across 50 VRC01 binding-associated Env AA positions of the acquired isolate from the most VRC01-sensitive HIV-1 strain significantly associated with PE. These results suggest that incorporating mutation scoring by BLOSUM62 and weighting by the strength of interactions at AA positions in the epitope:VRC01 interface can optimize performance of an Env sequence-based biomarker of VRC01 prevention efficacy. Future work could determine whether these results extend to other bnAbs and bnAb combinations.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , HIV Antibodies , Epitopes/genetics
2.
Clin Infect Dis ; 79(1): 78-85, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38372392

ABSTRACT

BACKGROUND: Protein-based vaccines for coronavirus disease 2019 (COVID-19) provide a traditional vaccine platform with long-lasting protection for non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogens and may complement messenger RNA vaccines as a booster dose. While NVX-CoV2373 showed substantial early efficacy, the durability of protection has not been delineated. METHODS: The PREVENT-19 vaccine trial used a blinded crossover design; the original placebo arm received NVX-CoV2373 after efficacy was established. Using novel statistical methods that integrate surveillance data of circulating strains with post-crossover cases, we estimated placebo-controlled vaccine efficacy and durability of NVX-CoV2373 against both pre-Delta and Delta strains of SARS-CoV-2. RESULTS: Vaccine efficacy against pre-Delta strains of COVID-19 was 89% (95% CI, 75-95%) and 87% (72-94%) at 0 and 90 days after 2 doses of NVX-CoV2373, respectively, with no evidence of waning (P = .93). Vaccine efficacy against the Delta strain was 88% (71-95%), 82% (56-92%), and 77% (44-90%) at 40, 120, and 180 days, respectively, with evidence of waning (P < .01). In sensitivity analyses, the estimated Delta vaccine efficacy at 120 days ranged from 66% (15-86%) to 89% (74-95%) per various assumptions of the surveillance data. CONCLUSIONS: NVX-CoV2373 has high initial efficacy against pre-Delta and Delta strains of COVID-19 with little evidence of waning for pre-Delta strains through 90 days and moderate waning against Delta strains over 180 days.


Subject(s)
COVID-19 Vaccines , COVID-19 , Cross-Over Studies , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Middle Aged , Male , Adult , Female , Vaccine Efficacy , Antibodies, Viral/blood , Aged , Immunization, Secondary , Young Adult
3.
JAMA Netw Open ; 7(5): e2412835, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38780941

ABSTRACT

Importance: SARS-CoV-2 viral load (VL) in the nasopharynx is difficult to quantify and standardize across settings, but it may inform transmission potential and disease severity. Objective: To characterize VL at COVID-19 diagnosis among previously uninfected and unvaccinated individuals by evaluating the association of demographic and clinical characteristics, viral variant, and trial with VL, as well as the ability of VL to predict severe disease. Design, Setting, and Participants: This secondary cross-protocol analysis used individual-level data from placebo recipients from 4 harmonized, phase 3 COVID-19 vaccine efficacy trials sponsored by Moderna, AstraZeneca, Janssen, and Novavax. Participants were SARS-CoV-2 negative at baseline and acquired COVID-19 during the blinded phase of the trials. The setting included the US, Brazil, South Africa, Colombia, Argentina, Peru, Chile, and Mexico; start dates were July 27, 2020, to December 27, 2020; data cutoff dates were March 26, 2021, to July 30, 2021. Statistical analysis was performed from November 2022 to June 2023. Main Outcomes and Measures: Linear regression was used to assess the association of demographic and clinical characteristics, viral variant, and trial with polymerase chain reaction-measured log10 VL in nasal and/or nasopharyngeal swabs taken at the time of COVID-19 diagnosis. Results: Among 1667 participants studied (886 [53.1%] male; 995 [59.7%] enrolled in the US; mean [SD] age, 46.7 [14.7] years; 204 [12.2%] aged 65 years or older; 196 [11.8%] American Indian or Alaska Native, 150 [9%] Black or African American, 1112 [66.7%] White; 762 [45.7%] Hispanic or Latino), median (IQR) log10 VL at diagnosis was 6.18 (4.66-7.12) log10 copies/mL. Participant characteristics and viral variant explained only 5.9% of the variability in VL. The independent factor with the highest observed differences was trial: Janssen participants had 0.54 log10 copies/mL lower mean VL vs Moderna participants (95% CI, 0.20 to 0.87 log10 copies/mL lower). In the Janssen study, which captured the largest number of COVID-19 events and variants and used the most intensive post-COVID surveillance, neither VL at diagnosis nor averaged over days 1 to 28 post diagnosis was associated with COVID-19 severity. Conclusions and Relevance: In this study of placebo recipients from 4 randomized phase 3 trials, high variability was observed in SARS-CoV-2 VL at the time of COVID-19 diagnosis, and only a fraction was explained by individual participant characteristics or viral variant. These results suggest challenges for future studies of interventions seeking to influence VL and elevates the importance of standardized methods for specimen collection and viral load quantitation.


Subject(s)
COVID-19 , Nasopharynx , SARS-CoV-2 , Viral Load , Humans , Nasopharynx/virology , Viral Load/statistics & numerical data , Male , Female , Adult , Middle Aged , COVID-19 Vaccines/therapeutic use , Randomized Controlled Trials as Topic , United States , Aged
4.
Nat Commun ; 15(1): 2175, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467646

ABSTRACT

In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p < 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against the most distant viruses.


Subject(s)
Ad26COVS1 , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Vaccine Efficacy , Amino Acids , Antibodies, Viral , Antibodies, Neutralizing
5.
Nat Commun ; 14(1): 8299, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097552

ABSTRACT

The Antibody Mediated Prevention (AMP) trials (NCT02716675 and NCT02568215) demonstrated that passive administration of the broadly neutralizing monoclonal antibody VRC01 could prevent some HIV-1 acquisition events. Here, we use mathematical modeling in a post hoc analysis to demonstrate that VRC01 influenced viral loads in AMP participants who acquired HIV. Instantaneous inhibitory potential (IIP), which integrates VRC01 serum concentration and VRC01 sensitivity of acquired viruses in terms of both IC50 and IC80, follows a dose-response relationship with first positive viral load (p = 0.03), which is particularly strong above a threshold of IIP = 1.6 (r = -0.6, p = 2e-4). Mathematical modeling reveals that VRC01 activity predicted from in vitro IC80s and serum VRC01 concentrations overestimates in vivo neutralization by 600-fold (95% CI: 300-1200). The trained model projects that even if future therapeutic HIV trials of combination monoclonal antibodies do not always prevent acquisition, reductions in viremia and reservoir size could be expected.


Subject(s)
HIV Infections , HIV-1 , Humans , Antibodies, Neutralizing , Viral Load , HIV Antibodies , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL