Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cytometry A ; 105(6): 430-436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634730

ABSTRACT

We report the development of an optimized 50-color spectral flow cytometry panel designed for the in-depth analysis of the immune system in human blood and tissues, with the goal of maximizing the amount of information that can be collected using currently available flow cytometry platforms. We established and tested this panel using peripheral blood mononuclear cells (PBMCs), but included CD45 to enable its future use for the analysis of human tissue samples. The panel contains lineage markers for all major immune cell subsets, and an extensive set of phenotyping markers focused on the activation and differentiation status of the T cell and dendritic cell (DC) compartment. We outline the biological insight that can be gained from the simultaneous measurement of such a large number of proteins and propose that this approach provides a unique opportunity for the comprehensive exploration of the immune status in human samples with a limited number of cells. Of note, we tested the panel to be compatible with cell sorting for further downstream applications. Furthermore, to facilitate the wide-spread implementation of such a panel across different cohorts and samples, we established a trimmed-down 45-color version which can be used with different spectral cytometry platforms. Finally, to generate this panel, we utilized not only existing panel design guidelines, but also developed new metrics to systematically identify the optimal combination of 50 fluorochromes and evaluate fluorochrome-specific resolution in the context of a 50-color unmixing matrix.


Subject(s)
Dendritic Cells , Flow Cytometry , Immunophenotyping , T-Lymphocytes , Humans , Dendritic Cells/immunology , Dendritic Cells/cytology , Flow Cytometry/methods , Immunophenotyping/methods , T-Lymphocytes/immunology , T-Lymphocytes/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/cytology , Immune System/cytology , Phenotype , Biomarkers
2.
Nat Mater ; 18(1): 82-89, 2019 01.
Article in English | MEDLINE | ID: mdl-30542094

ABSTRACT

The functional properties of colloidal materials can be tailored by tuning the shape of their constituent particles. Unfortunately, a reliable, general methodology for purifying colloidal materials solely based on shape is still lacking. Here we exploit the single-particle analysis and sorting capabilities of the fluorescence-activated cell sorting (FACS) instrument, a commonly used tool in biomedical research, and demonstrate the ability to separate mixtures of synthetic microparticles based solely on their shape with high purity. We achieve this by simultaneously obtaining four independent optical scattering signals from the FACS instrument to create shape-specific 'scattering signatures' that can be used for particle classification and sorting. We demonstrate that these four-dimensional signatures can overcome the confounding effects of particle orientation on shape-based characterization. Using this strategy, robust discrimination of particles differing only slightly in shape and an efficient selection of desired shapes from mixtures comprising particles of diverse sizes and materials is demonstrated.

3.
Anal Chem ; 90(5): 3262-3269, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29436820

ABSTRACT

Biologic drugs are typically manufactured in mammalian host cells, and it is critical from a drug safety and efficacy perspective to detect and remove host cell proteins (HCPs) during production. This is currently achieved with sets of polyclonal antibodies (pAbs), but these suffer from critical shortcomings because their composition is inherently undefined, and they cannot detect nonimmunogenic HCPs. In this work, we report a high-throughput screening and array-based binding characterization strategy that we employed to generate a set of aptamers that overcomes these limitations to achieve sensitive, broad-spectrum detection of HCPs from the widely used Chinese hamster ovary (CHO) cell line. We identified a set of 32 DNA aptamers that achieve better sensitivity than a commercial pAb reagent set and can detect a comparable number of HCPs over a broad range of isoelectric points and sizes. Importantly, these aptamers detect multiple contaminants that are known to be responsible for therapeutic antibody degradation and toxicity in patients. Because HCP aptamer reagents are sequence-defined and chemically synthesized, we believe they may enable safer production of biologic drugs, and this strategy should be broadly applicable for the generation of HCP detection reagents for other cell lines.


Subject(s)
Aptamers, Nucleotide/chemistry , DNA/chemistry , Drug Contamination/prevention & control , Proteins/analysis , Animals , Antibodies/immunology , CHO Cells , Cricetulus , Limit of Detection , Proteins/immunology
4.
Chem Commun (Camb) ; 50(28): 3747-9, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24577617

ABSTRACT

We report a one-pot, closed-vessel enzymatic assay that eliminates carryover contamination while preserving robust DNA amplification in loop-mediated isothermal amplification (LAMP), providing reliable and rapid detection of target DNA in contaminated samples.


Subject(s)
DNA, Bacterial/analysis , Nucleic Acid Amplification Techniques/methods , DNA, Bacterial/chemistry , Salmonella typhimurium/genetics , Uracil-DNA Glycosidase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL