ABSTRACT
Polymorphism of the gene encoding mucin 1 (MUC1) is associated with skeletal and dental phenotypes in human genomic studies. Animals lacking MUC1 exhibit mild reduction in bone density. These phenotypes could be a consequence of modulation of bodily Ca homeostasis by MUC1, as suggested by the previous observation that MUC1 enhances cell surface expression of the Ca2+-selective channel, TRPV5, in cultured unpolarized cells. Using biotinylation of cell surface proteins, we asked whether MUC1 influences endocytosis of TRPV5 and another Ca2+-selective TRP channel, TRPV6, in cultured polarized epithelial cells. Our results indicate that MUC1 reduces endocytosis of both channels, enhancing cell surface expression. Further, we found that mice lacking MUC1 lose apical localization of TRPV5 and TRPV6 in the renal tubular and duodenal epithelium. Females, but not males, lacking MUC1 exhibit reduced blood Ca2+. However, mice lacking MUC1 exhibited no differences in basal urinary Ca excretion or Ca retention in response to PTH receptor signaling, suggesting compensation by transport mechanisms independent of TRPV5 and TRPV6. Finally, humans with autosomal dominant tubulointerstitial kidney disease due to frame-shift mutation of MUC1 (ADTKD-MUC1) exhibit reduced plasma Ca concentrations compared to control individuals with mutations in the gene encoding uromodulin (ADTKD-UMOD), consistent with MUC1 haploinsufficiency causing reduced bodily Ca2+. In summary, our results provide further insight into the role of MUC1 in Ca2+-selective TRP channel endocytosis and the overall effects on Ca concentrations.
Subject(s)
Calcium , Mucin-1 , TRPV Cation Channels , Animals , Female , Humans , Mice , Calcium/blood , Calcium/metabolism , Calcium/urine , Cell Membrane/metabolism , Cells, Cultured , Mucin-1/genetics , Mucin-1/metabolism , TRPV Cation Channels/metabolism , Epithelial Cells/metabolism , Sex Factors , Mutation , Protein Transport/geneticsABSTRACT
As life expectancy continues to rise, age-related diseases are becoming more prevalent. For example, proteinuric glomerular diseases typified by podocyte injury have worse outcomes in the elderly compared with young patients. However, the reasons are not well understood. We hypothesized that injury to nonaged podocytes induces senescence, which in turn augments their aging processes. In primary cultured human podocytes, injury induced by a cytopathic antipodocyte antibody, adriamycin, or puromycin aminonucleoside increased the senescence-related genes CDKN2A (p16INK4a/p14ARF), CDKN2D (p19INK4d), and CDKN1A (p21). Podocyte injury in human kidney organoids was accompanied by increased expression of CDKN2A, CDKN2D, and CDKN1A. In young mice, experimental focal segmental glomerulosclerosis (FSGS) induced by adriamycin and antipodocyte antibody increased the glomerular expression of p16, p21, and senescence-associated ß-galactosidase (SA-ß-gal). To assess the long-term effects of early podocyte injury-induced senescence, we temporally followed young mice with experimental FSGS through adulthood (12 m of age) and middle age (18 m of age). p16 and Sudan black staining were higher at middle age in mice with earlier FSGS compared with age-matched mice that did not get FSGS when young. This was accompanied by lower podocyte density, reduced canonical podocyte protein expression, and increased glomerular scarring. These results are consistent with injury-induced senescence in young podocytes, leading to increased senescence of podocytes by middle age accompanied by lower podocyte lifespan and health span.NEW & NOTEWORTHY Glomerular function is decreased by aging. However, little is known about the molecular mechanisms involved in age-related glomerular changes and which factors could contribute to a worse glomerular aging process. Here, we reported that podocyte injury in young mice and culture podocytes induced senescence, a marker of aging, and accelerates glomerular aging when compared with healthy aging mice.
Subject(s)
Glomerulosclerosis, Focal Segmental , Kidney Diseases , Podocytes , Middle Aged , Humans , Mice , Animals , Aged , Podocytes/metabolism , Glomerulosclerosis, Focal Segmental/metabolism , Kidney Glomerulus/metabolism , Kidney Diseases/metabolism , Aging , Doxorubicin/toxicity , Doxorubicin/metabolismABSTRACT
Vascularization plays a critical role in organ maturation and cell-type development. Drug discovery, organ mimicry, and ultimately transplantation hinge on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcame this hurdle by combining a human induced pluripotent stem cell (iPSC) line containing an inducible ETS translocation variant 2 (ETV2) (a transcription factor playing a role in endothelial cell development) that directs endothelial differentiation in vitro, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive endothelialization with a cellular identity most closely related to human kidney endothelia. Endothelialized kidney organoids also show increased maturation of nephron structures, an associated fenestrated endothelium with de novo formation of glomerular and venous subtypes, and the emergence of drug-responsive renin expressing cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Thus, incorporation of an engineered endothelial niche into a previously published kidney organoid protocol allowed the orthogonal differentiation of endothelial and parenchymal cell types, demonstrating the potential for applicability to other basic and translational organoid studies.
ABSTRACT
Kidney organoids derived from human or rodent pluripotent stem cells have glomerular structures and differentiated/polarized nephron segments. Although there is an increasing understanding of the patterns of expression of transcripts and proteins within kidney organoids, there is a paucity of data regarding functional protein expression, in particular on transporters that mediate the vectorial transport of solutes. Using cells derived from kidney organoids, we examined the functional expression of key ion channels that are expressed in distal nephron segments: the large-conductance Ca2+-activated K+ (BKCa) channel, the renal outer medullary K+ (ROMK, Kir1.1) channel, and the epithelial Na+ channel (ENaC). RNA-sequencing analyses showed that genes encoding the pore-forming subunits of these transporters, and for BKCa channels, key accessory subunits, are expressed in kidney organoids. Expression and localization of selected ion channels was confirmed by immunofluorescence microscopy and immunoblot analysis. Electrophysiological analysis showed that BKCa and ROMK channels are expressed in different cell populations. These two cell populations also expressed other unidentified Ba2+-sensitive K+ channels. BKCa expression was confirmed at a single channel level, based on its high conductance and voltage dependence of activation. We also found a population of cells expressing amiloride-sensitive ENaC currents. In summary, our results show that human kidney organoids functionally produce key distal nephron K+ and Na+ channels.NEW & NOTEWORTHY Our results show that human kidney organoids express key K+ and Na+ channels that are expressed on the apical membranes of cells in the aldosterone-sensitive distal nephron, including the large-conductance Ca2+-activated K+ channel, renal outer medullary K+ channel, and epithelial Na+ channel.
Subject(s)
Induced Pluripotent Stem Cells , Potassium Channels, Inwardly Rectifying , Aldosterone/metabolism , Amiloride/pharmacology , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Kidney/metabolism , Organoids/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , RNA/metabolism , Sodium/metabolismABSTRACT
BACKGROUND: Sepsis is the most common cause of acute kidney injury (AKI) in critically ill patients. Four phenotypes (α, ß, γ, δ) for sepsis, which have different outcomes and responses to treatment, were described using routine clinical data in the electronic health record. RESEARCH QUESTION: Do the frequencies of AKI, acute kidney disease (AKD), chronic kidney disease (CKD), and AKI on CKD differ by sepsis phenotype? STUDY DESIGN AND METHODS: This was a secondary analysis of a randomized clinical trial of early resuscitation, including patients with septic shock at 31 sites. After excluding patients with end-stage kidney disease and missing data, we determined frequencies of the following clinical outcomes: AKI (defined within 24 h as Kidney Disease: Improving Global Outcomes stages 2 or 3 or stage 1 with tissue inhibitor of metalloproteinases-2 × insulin-like growth factor binding protein 7 value of > 2.0), CKD, and AKD (persistence of AKI at any stage on day 7 after enrollment) across four phenotypes. We performed multivariable logistic regression to assess the risk-adjusted association between development of AKI and AKD and phenotype. RESULTS: Among 1,090 eligible patients, 543 patients (50%) had AKI. Across phenotypes, the frequencies of AKI varied, being highest in the δ and ß phenotypes (78% and 71%, respectively) and the lowest in the α phenotype (26%; P < .001). AKD occurred most often in the δ phenotype (41%) and least often in the α phenotype (8%; P < .001). The highest frequencies of CKD and of AKI on CKD were found in the ß phenotype (53% and 38% respectively; P < .001 for both). In the multivariable logistic regression models (α phenotype as reference), δ phenotype showed the strongest association with AKI (OR, 12.33; 95% CI, 7.81-19.47; P < .001) and AKD (OR, 9.18; 95% CI, 5.44-15.51; P < .001). INTERPRETATION: The rates of AKI and AKD differed across clinical sepsis phenotypes and are more common among patients with phenotypes ß and δ. Phenotype ß showed a higher level of underlying CKD that predisposed patients to new AKI. The α and γ phenotypes showed lower frequencies of AKI and less progression to AKD.
Subject(s)
Acute Kidney Injury , Phenotype , Renal Insufficiency, Chronic , Sepsis , Humans , Male , Female , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Middle Aged , Sepsis/complications , Sepsis/epidemiology , AgedABSTRACT
The decrease in the podocyte's lifespan and health-span that typify healthy kidney aging cause a decrease in their normal structure, physiology and function. The ability to halt and even reverse these changes becomes clinically relevant when disease is superimposed on an aged kidney. RNA-sequencing of podocytes from middle-aged mice showed an inflammatory phenotype with increases in the NLRP3 inflammasome, signaling for IL2/Stat5, IL6 and TNF, interferon gamma response, allograft rejection and complement, consistent with inflammaging. Furthermore, injury-induced NLRP3 signaling in podocytes was further augmented in aged mice compared to young ones. The NLRP3 inflammasome (NLRP3, Caspase-1, IL1ß IL-18) was also increased in podocytes of middle-aged humans. Higher transcript expression for NLRP3 in human glomeruli was accompanied by reduced podocyte density and increased global glomerulosclerosis and glomerular volume. Pharmacological inhibition of NLRP3 with MCC950, or gene deletion, reduced podocyte senescence and the genes typifying aging in middle-aged mice, which was accompanied by an improved podocyte lifespan and health-span. Moreover, modeling the injury-dependent increase in NLRP3 signaling in human kidney organoids confirmed the anti-senescence effect of MC9950. Finally, NLRP3 also impacted liver aging. Together, these results suggest a critical role for the NLRP3 inflammasome in podocyte and liver aging.
Subject(s)
Podocytes , Humans , Animals , Mice , Middle Aged , Podocytes/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kidney Glomerulus/metabolism , AgingABSTRACT
Vascularization plays a critical role in organ maturation and cell type development. Drug discovery, organ mimicry, and ultimately transplantation in a clinical setting thereby hinges on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcome this hurdle by combining an inducible ETS translocation variant 2 (ETV2) human induced pluripotent stem cell (iPSC) line, which directs endothelial fate, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive vascularization by endothelial cells with an identity most closely related to endogenous kidney endothelia. Vascularized organoids also show increased maturation of nephron structures including more mature podocytes with improved marker expression, foot process interdigitation, an associated fenestrated endothelium, and the presence of renin+ cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Furthermore, this approach is orthogonal to native tissue differentiation paths, hence readily adaptable to other organoid systems and thus has the potential for a broad impact on basic and translational organoid studies.
ABSTRACT
Pluripotent stem cell (PSC)-derived organoids have emerged as novel multicellular models of human tissue development but display immature phenotypes, aberrant tissue fates, and a limited subset of cells. Here, we demonstrate that integrated analysis and engineering of gene regulatory networks (GRNs) in PSC-derived multilineage human liver organoids direct maturation and vascular morphogenesis in vitro. Overexpression of PROX1 and ATF5, combined with targeted CRISPR-based transcriptional activation of endogenous CYP3A4, reprograms tissue GRNs and improves native liver functions, such as FXR signaling, CYP3A4 enzymatic activity, and stromal cell reactivity. The engineered tissues possess superior liver identity when compared with other PSC-derived liver organoids and show the presence of hepatocyte, biliary, endothelial, and stellate-like cell populations in single-cell RNA-seq analysis. Finally, they show hepatic functions when studied in vivo. Collectively, our approach provides an experimental framework to direct organogenesis in vitro by systematically probing molecular pathways and transcriptional networks that promote tissue development.
Subject(s)
Gene Regulatory Networks , Organoids , Cytochrome P-450 CYP3A/chemistry , Cytochrome P-450 CYP3A/genetics , Gene Regulatory Networks/genetics , Humans , Liver/physiologyABSTRACT
Peripheral nerve injury (PNI) impacts millions annually, often leaving debilitated patients with minimal repair options to improve functional recovery. Our group has previously developed tissue engineered nerve grafts (TENGs) featuring long, aligned axonal tracts from dorsal root ganglia (DRG) neurons that are fabricated in custom bioreactors using the process of axon "stretch-growth." We have shown that TENGs effectively serve as "living scaffolds" to promote regeneration across segmental nerve defects by exploiting the newfound mechanism of axon-facilitated axon regeneration, or "AFAR," by simultaneously providing haptic and neurotrophic support. To extend this work, the current study investigated the efficacy of living versus nonliving regenerative scaffolds in preserving host sensory and motor neuronal health following nerve repair. Rats were assigned across five groups: naïve, or repair using autograft, nerve guidance tube (NGT) with collagen, NGT + non-aligned DRG populations in collagen, or TENGs. We found that TENG repairs yielded equivalent regenerative capacity as autograft repairs based on preserved health of host spinal cord motor neurons and acute axonal regeneration, whereas NGT repairs or DRG neurons within an NGT exhibited reduced motor neuron preservation and diminished regenerative capacity. These acute regenerative benefits ultimately resulted in enhanced levels of functional recovery in animals receiving TENGs, at levels matching those attained by autografts. Our findings indicate that TENGs may preserve host spinal cord motor neuron health and regenerative capacity without sacrificing an otherwise uninjured nerve (as in the case of the autograft) and therefore represent a promising alternative strategy for neurosurgical repair following PNI.
Subject(s)
Axons/physiology , Motor Neurons/pathology , Nerve Regeneration/physiology , Peripheral Nerve Injuries/physiopathology , Spinal Cord/pathology , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Cell Survival , Peripheral Nerve Injuries/pathology , Rats, Sprague-Dawley , Schwann Cells/pathology , Spinal Cord Ventral Horn/pathology , Staining and LabelingABSTRACT
Volumetric muscle loss (VML) is the traumatic or surgical loss of skeletal muscle beyond the inherent regenerative capacity of the body, generally leading to severe functional deficit. Formation of appropriate somato-motor innervations remains one of the biggest challenges for both autologous grafts as well as tissue-engineered muscle constructs. We aim to address this challenge by developing pre-innervated tissue-engineered muscle comprised of long aligned networks of spinal motor neurons and skeletal myocytes on aligned nanofibrous scaffolds. Motor neurons led to enhanced differentiation and maturation of skeletal myocytes in vitro. These pre-innervated tissue-engineered muscle constructs when implanted in a rat VML model significantly increased satellite cell density, neuromuscular junction maintenance, graft revascularization, and muscle volume over three weeks as compared to myocyte-only constructs and nanofiber scaffolds alone. These pro-regenerative effects may enhance functional neuromuscular regeneration following VML, thereby improving the levels of functional recovery following these devastating injuries.