Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Trends Immunol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38862366

ABSTRACT

Despite prevalent diversity and inclusion programs in STEM, gender biases and stereotypes persist across educational and professional settings. Recognizing this enduring bias is crucial for achieving transformative change on gender equity and can help orient policy toward more effective strategies to address ongoing disparities.

2.
5.
Small ; : e2301385, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37269217

ABSTRACT

Metastatic breast cancer is responsible for 90% of mortalities among women suffering from various types of breast cancers. Traditional cancer treatments such as chemotherapy and radiation therapy can cause significant side effects and may not be effective in many cases. However, recent advances in nanomedicine have shown great promise in the treatment of metastatic breast cancer. For example, nanomedicine demonstrated robust capacity in detection of metastatic cancers at early stages (i.e., before the metastatic cells leave the initial tumor site), which gives clinicians a timely option to change their treatment process (for example, instead of endocrine therapy they may use chemotherapy). Here recent advances in nanomedicine technology in the identification and treatment of metastatic breast cancers are reviewed.

6.
Small ; : e2305940, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803920

ABSTRACT

Nanomedicine technologies are being developed for the prevention, diagnosis, and treatment of cardiovascular disease (CVD), which is the leading cause of death worldwide. Before delving into the nuances of cardiac nanomedicine, it is essential to comprehend the fundamental sex-specific differences in cardiovascular health. Traditionally, CVDs have been more prevalent in males, but it is increasingly evident that females also face significant risks, albeit with distinct characteristics. Females tend to develop CVDs at a later age, exhibit different clinical symptoms, and often experience worse outcomes compared to males. These differences indicate the need for sex-specific approaches in cardiac nanomedicine. This Perspective discusses the importance of considering sex in the safety and therapeutic efficacy of nanomedicine approaches for the prevention, diagnosis, and treatment of CVD.

7.
Small ; 19(36): e2301838, 2023 09.
Article in English | MEDLINE | ID: mdl-37119440

ABSTRACT

The protein corona forms spontaneously on nanoparticle surfaces when nanomaterials are introduced into any biological system/fluid. Reliable characterization of the protein corona is, therefore, a vital step in the development of safe and efficient diagnostic and therapeutic nanomedicine products. 2134 published manuscripts on the protein corona are reviewed and a down-selection of 470 papers spanning 2000-2021, comprising 1702 nanoparticle (NP) systems is analyzed. This analysis reveals: i) most corona studies have been conducted on metal and metal oxide nanoparticles; ii) despite their overwhelming presence in clinical practice, lipid-based NPs are underrepresented in protein corona research, iii) studies use new methods to improve reliability and reproducibility in protein corona research; iv) studies use more specific protein sources toward personalized medicine; and v) careful characterization of nanoparticles after corona formation is imperative to minimize the role of aggregation and protein contamination on corona outcomes. As nanoparticles used in biomedicine become increasingly prevalent and biochemically complex, the field of protein corona research will need to focus on developing analytical approaches and characterization techniques appropriate for each unique nanoparticle formulation. Achieving such characterization of the nano-bio interface of nanobiotechnologies will enable more seamless development and safe implementation of nanoparticles in medicine.


Subject(s)
Metal Nanoparticles , Nanoparticles , Protein Corona , Protein Corona/chemistry , Reproducibility of Results , Proteins/chemistry , Nanomedicine , Nanoparticles/chemistry
8.
Mol Pharm ; 18(2): 476-482, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32379456

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 and COVID-19) has produced an unprecedented global pandemic. Though the death rate from COVID-19 infection is ∼2%, many infected people recover at home. Among patients for whom COVID-19 is deadly are those with pre-existing comorbidities. Therefore, identification of populations at highest risk of COVID-19 mortality could significantly improve the capacity of healthcare providers to take early action and minimize the possibility of overwhelming care centers, which in turn would save many lives. Although several approaches have been used/developed (or are being developed/suggested) to diagnose COVID-19 infection, no approach is available/proposed for fast diagnosis of COVID-19 infections likely to be fatal. The central aim of this short perspective is to suggest a few possible nanobased technologies (i.e., protein corona sensor array and magnetic levitation) that could discriminate COVID-19-infected people while still in the early stages of infection who are at high risk of death. Such discrimination technologies would not only be useful in protecting health care centers from becoming overwhelmed but would also provide a powerful tool to better control possible future pandemics with a less social and economic burden.


Subject(s)
COVID-19/diagnosis , COVID-19/mortality , COVID-19/virology , SARS-CoV-2/pathogenicity , Humans , Pandemics/statistics & numerical data , Risk Factors
9.
Mol Pharm ; 18(2): 550-575, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32519875

ABSTRACT

The poor healing associated with chronic wounds affects millions of people worldwide through high mortality rates and associated costs. Chronic wounds present three main problems: First, the absence of a suitable environment to facilitate cell migration, proliferation, and angiogenesis; second, bacterial infection; and third, unbalanced and prolonged inflammation. Unfortunately, current therapeutic approaches have not been able to overcome these main issues and, therefore, have limited clinical success. Over the past decade, incorporating the unique advantages of nanomedicine into wound healing approaches has yielded promising outcomes. Nanomedicine is capable of stimulating various cellular and molecular mechanisms involved in the wound microenvironment via antibacterial, anti-inflammatory, and angiogenetic effects, potentially reversing the wound microenvironment from nonhealing to healing. This review briefly discusses wound healing mechanisms and pathophysiology and then highlights recent findings regarding the opportunities and challenges of using nanomedicine in chronic wound management.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Skin/injuries , Theranostic Nanomedicine/methods , Wound Healing/drug effects , Actinobacteria , Angiogenesis Inducing Agents/administration & dosage , Angiogenesis Inducing Agents/pharmacokinetics , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Bandages , Chronic Disease/drug therapy , Disease Models, Animal , Drug Compounding/methods , Humans , Hydrogels/chemistry , Nanoparticles/administration & dosage , Neovascularization, Physiologic/drug effects , Photosensitizing Agents/administration & dosage , Photothermal Therapy/methods , Skin/drug effects , Skin/immunology , Skin/microbiology , Wound Healing/physiology
10.
Mol Pharm ; 18(6): 2448-2453, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33983745

ABSTRACT

Nanomedicine has demonstrated a substantial role in vaccine development against severe acute respiratory syndrome coronavirus (SARS-CoV-2 and COVID-19). Although nanomedicine-based vaccines have now been validated in millions of individuals worldwide in phase 4 and tracking of sex-disaggregated data on COVID-19 is ongoing, immune responses that underlie COVID-19 disease outcomes have not been clarified yet. A full understanding of sex-role effects on the response to nanomedicine products is essential to building an effective and unbiased response to the pandemic. Here, we exposed model lipid nanoparticles (LNPs) to whole blood of 18 healthy donors (10 females and 8 males) and used flow cytometry to measure cellular uptake by circulating leukocytes. Our results demonstrated significant differences in the uptake of LNP between male and female natural killer (NK) cells. The results of this proof-of-concept study show the importance of recipient sex as a critical factor which enables researchers to better consider sex in the development and administration of vaccines for safer and more-efficient sex-specific outcomes.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/chemistry , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Drug Compounding/methods , Fatty Acids, Monounsaturated/chemistry , Female , Healthy Volunteers , Humans , Immunogenicity, Vaccine , Liposomes , Male , Pandemics/prevention & control , Quaternary Ammonium Compounds/chemistry , Sex Factors , Treatment Outcome
11.
Mol Pharm ; 18(8): 3171-3180, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34279974

ABSTRACT

Current treatment of chronic wounds has been critically limited by various factors, including bacterial infection, biofilm formation, impaired angiogenesis, and prolonged inflammation. Addressing these challenges, we developed a multifunctional wound dressing-based three-pronged approach for accelerating wound healing. The multifunctional wound dressing, composed of nanofibers, functional nanoparticles, natural biopolymers, and selected protein and peptide, can target multiple endogenous repair mechanisms and represents a promising alternative to current wound healing products.


Subject(s)
Annexin A1/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Bandages , Diabetes Mellitus, Experimental/complications , Follistatin-Related Proteins/administration & dosage , Peptides/administration & dosage , Staphylococcal Infections/complications , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Surgical Wound/complications , Surgical Wound/drug therapy , Wound Healing/drug effects , Wound Infection/complications , Wound Infection/drug therapy , 3T3 Cells , Animals , Biocompatible Materials/administration & dosage , Biopolymers/chemistry , Cell Survival/drug effects , Diabetes Mellitus, Experimental/chemically induced , HaCaT Cells , Humans , Magnetic Iron Oxide Nanoparticles/chemistry , Male , Materials Testing/methods , Mice , Nanofibers/chemistry , Rats , Rats, Wistar , Staphylococcal Infections/microbiology , Treatment Outcome , Wound Infection/microbiology
12.
Chem Rev ; 119(21): 11352-11390, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31490059

ABSTRACT

The adult myocardium has a limited regenerative capacity following heart injury, and the lost cells are primarily replaced by fibrotic scar tissue. Suboptimal efficiency of current clinical therapies to resurrect the infarcted heart results in injured heart enlargement and remodeling to maintain its physiological functions. These remodeling processes ultimately leads to ischemic cardiomyopathy and heart failure (HF). Recent therapeutic approaches (e.g., regenerative and nanomedicine) have shown promise to prevent HF postmyocardial infarction in animal models. However, these preclinical, clinical, and technological advancements have yet to yield substantial enhancements in the survival rate and quality of life of patients with severe ischemic injuries. This could be attributed largely to the considerable gap in knowledge between clinicians and nanobioengineers. Development of highly effective cardiac regenerative therapies requires connecting and coordinating multiple fields, including cardiology, cellular and molecular biology, biochemistry and chemistry, and mechanical and materials sciences, among others. This review is particularly intended to bridge the knowledge gap between cardiologists and regenerative nanomedicine experts. Establishing this multidisciplinary knowledge base may help pave the way for developing novel, safer, and more effective approaches that will enable the medical community to reduce morbidity and mortality in HF patients.


Subject(s)
Heart Failure/therapy , Nanomedicine/methods , Regenerative Medicine/methods , Animals , Heart Failure/prevention & control , Humans
13.
Nature ; 525(7570): 479-85, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26375005

ABSTRACT

The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.


Subject(s)
Follistatin-Related Proteins/metabolism , Myocardium/metabolism , Pericardium/growth & development , Pericardium/metabolism , Regeneration , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Culture Media, Conditioned/pharmacology , Female , Follistatin-Related Proteins/genetics , Humans , Male , Mice , Myoblasts, Cardiac/cytology , Myoblasts, Cardiac/drug effects , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Pericardium/cytology , Pericardium/drug effects , Rats , Regeneration/drug effects , Signal Transduction , Swine , Transgenes/genetics
14.
Adv Exp Med Biol ; 1318: 825-837, 2021.
Article in English | MEDLINE | ID: mdl-33973214

ABSTRACT

Pandemics are enormous threats to the world that impact all aspects of our lives, especially the global economy. The COVID-19 pandemic has emerged since December 2019 and has affected the global economy in many ways. As the world becomes more interconnected, the economic impacts of the pandemic become more serious. In addition to increased health expenditures and reduced labor force, the pandemic has hit the supply and demand chain massively and caused trouble for manufacturers who have to fire some of their employees or delay their economic activities to prevent more loss. With the closure of manufacturers and companies and reduced travel rates, usage of oil after the beginning of the pandemic has decreased significantly that was unprecedented in the last 30 years. The mining industry is a critical sector in several developing countries, and the COVID-19 pandemic has hit this industry too. Also, world stock markets declined as investors started to become concerned about the economic impacts of the COVID-19 pandemic. The tourism industry and airlines have also experienced an enormous loss too. The GDP has reduced, and this pandemic will cost the world more than 2 trillion at the end of 2020.


Subject(s)
COVID-19 , Pandemics , Humans , Industry , Pandemics/prevention & control , SARS-CoV-2 , Travel
15.
Angew Chem Int Ed Engl ; 60(7): 3338-3344, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33295129

ABSTRACT

Academic bullying is a serious issue that affects all disciplines and people of all levels of experience. To create a truly safe, productive, and vibrant environment in academia requires coordinated and collaborative input as well as the action of a variety of stakeholders, including scholarly communities, funding agencies, and institutions. In this Viewpoint, we focus on a framework of integrated responding, in which stakeholders as responsible and response-able parties could proactively collaborate and coordinate to reduce the incidence and consequences of academic bullying while at the same time building constructive academic cultures. The outcome of such a framework would be to create novel entities (e.g. centre of excellence in academic ethics and civility) and actions (e.g. incorporating bullying records into institutional rankings) that accelerate successful responses to academic bullying.

16.
J Proteome Res ; 19(11): 4364-4373, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32790309

ABSTRACT

Further complications associated with infection by severe acute respiratory syndrome coronavirus 2 (a.k.a. SARS-CoV-2) continue to be reported. Very recent findings reveal that 20-30% of patients at high risk of mortality from COVID-19 infection experience blood clotting that leads to stroke and sudden death. Timely assessment of the severity of blood clotting will be of enormous help to clinicians in determining the right blood-thinning medications to prevent stroke or other life-threatening consequences. Therefore, rapid identification of blood-clotting-related proteins in the plasma of COVID-19 patients would save many lives. Several nanotechnology-based approaches are being developed to diagnose patients at high risk of death due to complications from COVID-19 infections, including blood clots. This Perspective outlines (i) the significant potential of nanomedicine in assessing the risk of blood clotting and its severity in SARS-CoV-2 infected patients and (ii) its synergistic roles with advanced mass-spectrometry-based proteomics approaches in identifying the important protein patterns that are involved in the occurrence and progression of this disease. The combination of such powerful tools might help us understand the clotting phenomenon and pave the way for development of new diagnostics and therapeutics in the fight against COVID-19.


Subject(s)
Coronavirus Infections , Nanomedicine , Pandemics , Pneumonia, Viral , Thrombosis , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/physiopathology , Host-Pathogen Interactions , Humans , Pneumonia, Viral/complications , Pneumonia, Viral/physiopathology , Proteomics , Risk Assessment , SARS-CoV-2 , Thrombosis/diagnosis , Thrombosis/virology
17.
Anal Chem ; 92(2): 1663-1668, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31916738

ABSTRACT

Surprisingly, the densities of proteins in solution, which are important fundamental biophysical quantities, have not been accurately measured. The lack of such data can limit meaningful interpretation of physical and chemical features of proteins and enzymes. Here, we demonstrate a new technique using superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic levitation (MagLev), which promises to more precisely measure the density of proteins in solution. As a test of our new technique, we have levitated human plasma proteins using MagLev. By using standard density glass beads for calibration, MagLev showed that the levitated plasma proteins have a measured density in solution of 1.03 ± 0.02 g/cm3, which is much lower than those reported or assumed in the past literature (i.e., ∼1.35 g/cm3). Our findings suggest that MagLev may provide useful insights into the measurement of densities for better understanding the solution properties of proteins and their interactions both with other proteins in solution and with solvating water molecules.


Subject(s)
Magnetite Nanoparticles/chemistry , Humans , Magnetic Fields , Membrane Proteins/chemistry
18.
Nature ; 572(7770): 439, 2019 08.
Article in English | MEDLINE | ID: mdl-31431747

Subject(s)
Bullying , Organizations , Records
19.
J Cell Physiol ; 234(6): 9378-9386, 2019 06.
Article in English | MEDLINE | ID: mdl-30520022

ABSTRACT

Lung cancer (LC) is the most common type of cancer and the second cause of death worldwide in men and women after cardiovascular diseases. Non-small-cell lung cancer (NSCLC) is the most frequent type of LC occurring in 85% of cases. Developing new methods for early detection of NSCLC could substantially increase the chances of survival and, therefore, is an urgent task for current research. Nowadays, explosion in nanotechnology offers unprecedented opportunities for therapeutics and diagnosis applications. In this context, exploiting the bio-nano-interactions between nanoparticles (NPs) and biological fluids is an emerging field of research. Upon contact with biofluids, NPs are covered by a biomolecular coating referred to as "biomolecular corona" (BC). In this study, we exploited BC for discriminating between NSCLC patients and healthy volunteers. Blood samples from 10 NSCLC patients and 5 subjects without malignancy were allowed to interact with negatively charged lipid NPs, leading to the formation of a BC at the NP surface. After isolation, BCs were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We found that the BCs of NSCLC patients was significantly different from that of healthy individuals. Statistical analysis of SDS-PAGE results allowed discriminating between NSCLC cancer patients and healthy subjects with 80% specificity, 80% sensitivity and a total discriminate correctness rate of 80%. While the results of the present investigation cannot be conclusive due to the small size of the data set, we have shown that exploitation of the BC is a promising approach for the early diagnosis of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Early Detection of Cancer , Lung Neoplasms/diagnosis , Nanoparticles/chemistry , Blood Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/blood , Dynamic Light Scattering , Humans , Hydrodynamics , Liposomes/chemistry , Lung Neoplasms/blood , Principal Component Analysis
20.
SELECTION OF CITATIONS
SEARCH DETAIL