ABSTRACT
BACKGROUND: The emergence of SARS-CoV-2 has led to the development of serological assays that could aid in an understanding of the burden of COVID-19 disease. Many available tests lack rigorous evaluation and therefore results may be misleading. OBJECTIVES: The aim of this study was to assess the performance of a novel multiplexed immunoassay for the simultaneous detection of antibodies against SARS-CoV-2 trimeric spike (S), spike receptor binding domain (RBD), spike N terminal domain and nucleocapsid antigen and a novel pseudo-neutralisation assay. METHODS: A multiplexed solid-phase chemiluminescence assay (Meso Scale Discovery) was evaluated for the simultaneous detection of IgG binding to four SARS-CoV-2 antigens and the quantification of antibody-induced ACE-2 binding inhibition (pseudo-neutralisation assay). Sensitivity was evaluated with a total of 196 COVID-19 serum samples (169 confirmed PCR positive and 27 anti-nucleocapsid IgG positive) from individuals with mild symptomatic or asymptomatic disease. Specificity was evaluated with 194 control serum samples collected from adults prior to December 2019. RESULTS: The specificity and sensitivity of the binding IgG assay was highest for S protein with a specificity of 97.4 % and sensitivity of 96.2 % for samples taken 14 days and 97.9 % for samples taken 21 days following the onset of symptoms. IgG concentration to S and RBD correlated strongly with percentage inhibition measured by the pseudo-neutralisation assay. CONCLUSION: Excellent sensitivity for IgG detection was obtained over 14 days since onset of symptoms for three SARS-CoV-2 antigens (S, RBD and N) in this multiplexed assay which can also measure antibody functionality.