Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Metabolomics ; 15(4): 54, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30919098

ABSTRACT

INTRODUCTION: Fibromyalgia syndrome (FMS) is a chronic pain syndrome. Previous analyses of untargeted metabolomics data indicated altered metabolic profile in FMS patients. OBJECTIVES: We report a semi-targeted explorative metabolomics study on the urinary metabolite profile of FMS patients; exploring the potential of urinary metabolite information to augment existing medical diagnosis. METHODS: All cases were females. Patients had a medical history of persistent FMS (n = 18). Control groups were first-generation family members of the patients (n = 11), age-related individuals without indications of FMS (n = 10), and healthy, young (18-22 years) individuals (n = 41). The biofluid investigated was early morning urine samples. Data generation was done through gas chromatography-mass spectrometry (GC-MS) analysis and data processing and analyses were performed using Matlab, R, SPSS and SAS software. RESULTS: Quantitative analysis revealed the presence of 196 metabolites. Unsupervised and supervised multivariate analyses distinguished all three control groups and the FMS patients, which could be related to 14 significantly increased metabolites. These metabolites are associated with energy metabolism, digestion and metabolism of carbohydrates and other host and gut metabolites. CONCLUSIONS: Overall, urinary metabolite profiles in the FMS patients suggest: (1) energy utilization is a central aspect of this pain disorder, (2) dysbiosis seems to prevail in FMS patients, indicated by disrupted microbiota metabolites, supporting the model that microbiota may alter brain function through the gut-brain axis, with the gut being a gateway to generalized pain, and (3) screening of urine from FMS is an avenue to explore for adding non-invasive clinical information for diagnosis and treatment of FMS.


Subject(s)
Dysbiosis/metabolism , Fibromyalgia/metabolism , Fibromyalgia/physiopathology , Adult , Biomarkers/analysis , Biomarkers/urine , Female , Fibromyalgia/urine , Gas Chromatography-Mass Spectrometry/methods , Humans , Metabolome/physiology , Metabolomics/methods , Middle Aged , Multivariate Analysis , Young Adult
2.
BMC Neurol ; 17(1): 88, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28490352

ABSTRACT

BACKGROUND: Fibromyalgia syndrome (FMS) is a chronic pain syndrome. A plausible pathogenesis of the disease is uncertain and the pursuit of measurable biomarkers for objective identification of affected individuals is a continuing endeavour in FMS research. Our objective was to perform an explorative metabolomics study (1) to elucidate the global urinary metabolite profile of patients suffering from FMS, and (2) to explore the potential of this metabolite information to augment existing medical practice in diagnosing the disease. METHODS: We selected patients with a medical history of persistent FMS (n = 18), who described their recent state of the disease through the Fibromyalgia Impact Questionnaire (FIQR) and an in-house clinical questionnaire (IHCQ). Three control groups were used: first-generation family members of the patients (n = 11), age-related individuals without any indications of FMS or related conditions (n = 10), and healthy young (18-22 years) individuals (n = 20). All subjects were female and the biofluid under investigation was urine. Correlation analysis of the FIQR showed the FMS patients represented a well-defined disease group for this metabolomics study. Spectral analyses of urine were conducted using a 500 MHz 1H nuclear magnetic resonance (NMR) spectrometer; data processing and analyses were performed using Matlab, R, SPSS and SAS software. RESULTS AND DISCUSSION: Unsupervised and supervised multivariate analyses distinguished all three control groups and the FMS patients, and significant increases in metabolites related to the gut microbiome (hippuric, succinic and lactic acids) were observed. We have developed an algorithm for the diagnosis of FMS consisting of three metabolites - succinic acid, taurine and creatine - that have a good level of diagnostic accuracy (Receiver Operating Characteristic (ROC) analysis - area under the curve 90%) and on the pain and fatigue symptoms for the selected FMS patient group. CONCLUSION: Our data and comparative analyses indicated an altered metabolic profile of patients with FMS, analytically detectable within their urine. Validation studies may substantiate urinary metabolites to supplement information from medical assessment, tender-point measurements and FIQR questionnaires for an improved objective diagnosis of FMS.


Subject(s)
Fibromyalgia/diagnosis , Magnetic Resonance Spectroscopy , Metabolomics/methods , Surveys and Questionnaires , Adolescent , Adult , Biomarkers/metabolism , Case-Control Studies , Fatigue/etiology , Female , Humans , Middle Aged , Multivariate Analysis , Pain/etiology , Pain Measurement , ROC Curve , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL