Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nature ; 603(7902): 706-714, 2022 03.
Article in English | MEDLINE | ID: mdl-35104837

ABSTRACT

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Virus Internalization , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line , Cell Membrane/metabolism , Cell Membrane/virology , Chlorocebus aethiops , Convalescence , Female , Humans , Immune Sera/immunology , Intestines/pathology , Intestines/virology , Lung/pathology , Lung/virology , Male , Middle Aged , Mutation , Nasal Mucosa/pathology , Nasal Mucosa/virology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Tissue Culture Techniques , Virulence , Virus Replication
2.
Nat Immunol ; 14(4): 327-36, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23455675

ABSTRACT

During pathogen infection, antibodies can be carried into the infected cell, where they are detected by the ubiquitously expressed cytosolic antibody receptor TRIM21. Here we found that recognition of intracellular antibodies by TRIM21 activated immune signaling. TRIM21 catalyzed the formation of Lys63 (K63)-linked ubiquitin chains and stimulated the transcription factor pathways of NF-κB, AP-1, IRF3, IRF5 and IRF7. Activation resulted in the production of proinflammatory cytokines, modulation of natural killer stress ligands and induction of an antiviral state. Intracellular antibody signaling was abrogated by genetic deletion of TRIM21 and was restored by ectopic expression of TRIM21. The sensing of antibodies by TRIM21 was stimulated after infection by DNA or RNA nonenveloped viruses or intracellular bacteria. Thus, the antibody-TRIM21 detection system provides potent, comprehensive activation of the innate immune system independently of known pattern-recognition receptors.


Subject(s)
Antibodies, Viral/immunology , Intracellular Space/immunology , Intracellular Space/metabolism , Receptors, Fc/metabolism , Ribonucleoproteins/immunology , Signal Transduction , Viruses/immunology , Adenoviridae/immunology , Animals , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antigen-Antibody Complex/immunology , Antigen-Antibody Complex/metabolism , Bacteria/immunology , Cell Line , Cross Reactions , Cytokines/biosynthesis , Humans , Inflammation Mediators/metabolism , Interferon Regulatory Factors/metabolism , Mice , Molecular Docking Simulation , NF-kappa B/metabolism , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Receptors, Pattern Recognition/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism , Transcription Factor AP-1/metabolism
3.
PLoS Pathog ; 17(2): e1009164, 2021 02.
Article in English | MEDLINE | ID: mdl-33524070

ABSTRACT

The HIV capsid self-assembles a protective conical shell that simultaneously prevents host sensing whilst permitting the import of nucleotides to drive DNA synthesis. This is accomplished through the construction of dynamic, highly charged pores at the centre of each capsid multimer. The clustering of charges required for dNTP import is strongly destabilising and it is proposed that HIV uses the metabolite IP6 to coordinate the pore during assembly. Here we have investigated the role of inositol phosphates in coordinating a ring of positively charged lysine residues (K25) that forms at the base of the capsid pore. We show that whilst IP5, which can functionally replace IP6, engages an arginine ring (R18) at the top of the pore, the lysine ring simultaneously binds a second IP5 molecule. Dose dependent removal of K25 from the pore severely inhibits HIV infection and concomitantly prevents DNA synthesis. Cryo-tomography reveals that K25A virions have a severe assembly defect that inhibits the formation of mature capsid cones. Monitoring both the kinetics and morphology of capsids assembled in vitro reveals that while mutation K25A can still form tubes, the ability of IP6 to drive assembly of capsid cones has been lost. Finally, in single molecule TIRF microscopy experiments, capsid lattices in permeabilised K25 mutant virions are rapidly lost and cannot be stabilised by IP6. These results suggest that the coordination of IP6 by a second charged ring in mature hexamers drives the assembly of conical capsids capable of reverse transcription and infection.


Subject(s)
Capsid/metabolism , HIV-1/physiology , Lysine/metabolism , Phytic Acid/metabolism , Virus Assembly/physiology , Cell Line , DNA, Viral/biosynthesis , HIV-1/genetics , HIV-1/metabolism , Humans , Microscopy, Fluorescence , Nucleotides/metabolism
4.
PLoS Pathog ; 17(1): e1009246, 2021 01.
Article in English | MEDLINE | ID: mdl-33493182

ABSTRACT

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infects cells by binding to the host cell receptor ACE2 and undergoing virus-host membrane fusion. Fusion is triggered by the protease TMPRSS2, which processes the viral Spike (S) protein to reveal the fusion peptide. SARS-CoV-2 has evolved a multibasic site at the S1-S2 boundary, which is thought to be cleaved by furin in order to prime S protein for TMPRSS2 processing. Here we show that CRISPR-Cas9 knockout of furin reduces, but does not prevent, the production of infectious SARS-CoV-2 virus. Comparing S processing in furin knockout cells to multibasic site mutants reveals that while loss of furin substantially reduces S1-S2 cleavage it does not prevent it. SARS-CoV-2 S protein also mediates cell-cell fusion, potentially allowing virus to spread virion-independently. We show that loss of furin in either donor or acceptor cells reduces, but does not prevent, TMPRSS2-dependent cell-cell fusion, unlike mutation of the multibasic site that completely prevents syncytia formation. Our results show that while furin promotes both SARS-CoV-2 infectivity and cell-cell spread it is not essential, suggesting furin inhibitors may reduce but not abolish viral spread.


Subject(s)
Cell Fusion , Furin/genetics , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization , Animals , COVID-19 , CRISPR-Cas Systems , Chlorocebus aethiops , Gene Knockout Techniques , HEK293 Cells , Humans , Protein Structure, Tertiary , SARS-CoV-2 , Serine Endopeptidases , Vero Cells
5.
Proc Natl Acad Sci U S A ; 112(32): 10014-9, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26150489

ABSTRACT

Tripartite motif (TRIM) 21 is a cytosolic antibody receptor that neutralizes antibody-coated viruses that penetrate the cell and simultaneously activates innate immunity. Here we show that the conjugation of TRIM21 with K63-linked ubiquitin (Ub-(63)Ub) catalyzed by the sequential activity of nonredundant E2 Ub enzymes is required for its dual antiviral functions. TRIM21 is first labeled with monoubiquitin (monoUb) by the E2 Ube2W. The monoUb is a substrate for the heterodimeric E2 Ube2N/Ube2V2, resulting in TRIM21-anchored Ub-(63)Ub. Depletion of either E2 abolishes Ub-(63)Ub and Ub-(48)Ub conjugation of TRIM21, NF-κB signaling, and virus neutralization. The formation of TRIM21-Ub-(63)Ub precedes proteasome recruitment, and we identify an essential role for the 19S-resident and degradation-coupled deubiquitinase Poh1 in TRIM21 neutralization, signaling, and cytokine induction. This study elucidates a complex mechanism of step-wise ubiquitination and deubiquitination activities that allows contemporaneous innate immune signaling and neutralization by TRIM21.


Subject(s)
Ribonucleoproteins/metabolism , Ubiquitination , Animals , Cell Line , Cytokines/genetics , Humans , Lysine/metabolism , Mice , Models, Biological , NF-kappa B/metabolism , Neutralization Tests , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Substrate Specificity , Trans-Activators/metabolism , Transcription, Genetic , Ubiquitin-Conjugating Enzymes/metabolism
6.
Proc Natl Acad Sci U S A ; 111(37): 13463-8, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25169018

ABSTRACT

IgA is the most prevalent antibody type on mucosal surfaces and the second most prevalent antibody in circulation, yet its role in immune defense is not fully understood. Here we show that IgA is carried inside cells during virus infection, where it activates intracellular virus neutralization and innate immune signaling. Cytosolic IgA-virion complexes colocalize with the high-affinity antibody receptor tripartite motif-containing protein 21 (TRIM21) and are positive for lysine-48 ubiquitin chains. IgA neutralizes adenovirus infection in a TRIM21- and proteasome-dependent manner in both human and mouse cells. Translocated IgA also potently activates NF-κB signaling pathways in cells expressing TRIM21, whereas viral infection in the absence of antibody or TRIM21 is undetected. TRIM21 recognizes an epitope in IgG Fc that is not conserved in IgA; however, fluorescence anisotropy experiments demonstrate that direct binding to IgA is maintained. We use molecular modeling to show that TRIM21 forms a nonspecific hydrophobic seal around a ß-loop structure that is present in IgG, IgM, and IgA, explaining how TRIM21 achieves such remarkable broad antibody specificity. The findings demonstrate that the antiviral protection afforded by IgA extends to the intracellular cytosolic environment.


Subject(s)
Adenoviridae Infections/immunology , Antibodies, Neutralizing/metabolism , Immunity, Innate , Immunoglobulin A/metabolism , Neutralization Tests , Adenosine Triphosphatases/metabolism , Animals , Cell Cycle Proteins/metabolism , Cytokines/metabolism , HeLa Cells , Humans , Immunoglobulin A/blood , Immunoglobulin M/metabolism , Intracellular Space/metabolism , Mice , Models, Molecular , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism , Valosin Containing Protein , Virus Replication
7.
Proc Natl Acad Sci U S A ; 109(48): 19733-8, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23091005

ABSTRACT

Tripartite motif-containing 21 (TRIM21) is a cytosolic IgG receptor that mediates intracellular virus neutralization by antibody. TRIM21 targets virions for destruction in the proteasome, but it is unclear how a substrate as large as a viral capsid is degraded. Here, we identify the ATPase p97/valosin-containing protein (VCP), an enzyme with segregase and unfoldase activity, as a key player in this process. Depletion or catalytic inhibition of VCP prevents capsid degradation and reduces neutralization. VCP is required concurrently with the proteasome, as addition of inhibitor after proteasomal degradation has no effect. Moreover, our results suggest that it is the challenging nature of virus as a substrate that necessitates involvement of VCP, since intracellularly expressed IgG Fc is degraded in a VCP-independent manner. These results implicate VCP as an important host factor in antiviral immunity.


Subject(s)
Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Neutralization Tests , Ribonucleoproteins/physiology , Catalysis , Humans , Valosin Containing Protein
8.
Bioessays ; 33(11): 803-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22006823

ABSTRACT

Protection against bacterial and viral pathogens by antibodies has always been thought to end at the cell surface. Once inside the cell, a pathogen was understood to be safe from humoral immunity. However, it has now been found that antibodies can routinely enter cells attached to viral particles and mediate an intracellular immune response. Antibody-coated virions are detected inside the cell by means of an intracellular antibody receptor, TRIM21, which directs their degradation by recruitment of the ubiquitin-proteasome system. In this article we assess how this discovery alters our view of the way in which antibodies neutralise viral infection. We also consider the antiviral function of TRIM21 in the context of its other reported roles in immune signalling and autoimmunity. Finally, we discuss the conceptual implications of intracellular antibody immunity and how it alters our view of the discrete separation of extracellular and intracellular environments.


Subject(s)
Antibodies, Neutralizing/immunology , Immunity, Humoral , Ribonucleoproteins/immunology , Adenoviridae/immunology , Animals , Antigen-Antibody Complex/immunology , Autoantigens/immunology , Cytosol/immunology , Cytosol/virology , Humans , Mice , Proteasome Endopeptidase Complex/immunology , Signal Transduction , Ubiquitination , Virus Attachment , Virus Internalization
9.
Proc Natl Acad Sci U S A ; 107(46): 19985-90, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21045130

ABSTRACT

Antibodies provide effective antiviral immunity despite the fact that viruses escape into cells when they infect. Here we show that antibodies remain attached to viruses after cell infection and mediate an intracellular immune response that disables virions in the cytosol. We have discovered that cells possess a cytosolic IgG receptor, tripartite motif-containing 21 (TRIM21), which binds to antibodies with a higher affinity than any other IgG receptor in the human body. TRIM21 rapidly recruits to incoming antibody-bound virus and targets it to the proteasome via its E3 ubiquitin ligase activity. Proteasomal targeting leads to rapid degradation of virions in the cytosol before translation of virally encoded genes. Infection experiments demonstrate that at physiological antibody concentrations TRIM21 neutralizes viral infection. These results reveal an intracellular arm of adaptive immunity in which the protection mediated by antibodies does not end at the cell membrane but continues inside the cell to provide a last line of defense against infection.


Subject(s)
Antibodies, Neutralizing/immunology , Immunity/immunology , Intracellular Space/immunology , Ribonucleoproteins/immunology , Cell Line , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Microspheres , Neutralization Tests , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Virus Inactivation
10.
Nat Struct Mol Biol ; 30(3): 370-382, 2023 03.
Article in English | MEDLINE | ID: mdl-36624347

ABSTRACT

HIV-1 Gag metamorphoses inside each virion, from an immature lattice that forms during viral production to a mature capsid that drives infection. Here we show that the immature lattice is required to concentrate the cellular metabolite inositol hexakisphosphate (IP6) into virions to catalyze mature capsid assembly. Disabling the ability of HIV-1 to enrich IP6 does not prevent immature lattice formation or production of the virus. However, without sufficient IP6 molecules inside each virion, HIV-1 can no longer build a stable capsid and fails to become infectious. IP6 cannot be replaced by other inositol phosphate (IP) molecules, as substitution with other IPs profoundly slows mature assembly kinetics and results in virions with gross morphological defects. Our results demonstrate that while HIV-1 can become independent of IP6 for immature assembly, it remains dependent upon the metabolite for mature capsid formation.


Subject(s)
HIV-1 , HIV-1/metabolism , Capsid/metabolism , Virus Assembly , Capsid Proteins/metabolism , Phytic Acid/metabolism , Virion
11.
J Mol Biol ; 435(11): 168037, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37330292

ABSTRACT

The assembly of an HIV-1 particle begins with the construction of a spherical lattice composed of hexamer subunits of the Gag polyprotein. The cellular metabolite inositol hexakisphosphate (IP6) binds and stabilizes the immature Gag lattice via an interaction with the six-helix bundle (6HB), a crucial structural feature of Gag hexamers that modulates both virus assembly and infectivity. The 6HB must be stable enough to promote immature Gag lattice formation, but also flexible enough to be accessible to the viral protease, which cleaves the 6HB during particle maturation. 6HB cleavage liberates the capsid (CA) domain of Gag from the adjacent spacer peptide 1 (SP1) and IP6 from its binding site. This pool of IP6 molecules then promotes the assembly of CA into the mature conical capsid that is required for infection. Depletion of IP6 in virus-producer cells results in severe defects in assembly and infectivity of wild-type (WT) virions. Here we show that in an SP1 double mutant (M4L/T8I) with a hyperstable 6HB, IP6 can block virion infectivity by preventing CA-SP1 processing. Thus, depletion of IP6 in virus-producer cells markedly increases M4L/T8I CA-SP1 processing and infectivity. We also show that the introduction of the M4L/T8I mutations partially rescues the assembly and infectivity defects induced by IP6 depletion on WT virions, likely by increasing the affinity of the immature lattice for limiting IP6. These findings reinforce the importance of the 6HB in virus assembly, maturation, and infection and highlight the ability of IP6 to modulate 6HB stability.


Subject(s)
HIV-1 , Phytic Acid , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus , Capsid Proteins/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV-1/metabolism , Mutation , Peptides/metabolism , Phytic Acid/metabolism , Virion/genetics , Virion/metabolism
12.
Viruses ; 14(8)2022 07 23.
Article in English | MEDLINE | ID: mdl-35893676

ABSTRACT

TRIM7 catalyzes the ubiquitination of multiple substrates with unrelated biological functions. This cross-reactivity is at odds with the specificity usually displayed by enzymes, including ubiquitin ligases. Here we show that TRIM7's extreme substrate promiscuity is due to a highly unusual binding mechanism, in which the PRYSPRY domain captures any ligand with a C-terminal helix that terminates in a hydrophobic residue followed by a glutamine. Many of the non-structural proteins found in RNA viruses contain C-terminal glutamines as a result of polyprotein cleavage by 3C protease. This viral processing strategy generates novel substrates for TRIM7 and explains its ability to inhibit Coxsackie virus and norovirus replication. In addition to viral proteins, cellular proteins such as glycogenin have evolved C-termini that make them a TRIM7 substrate. The 'helix-ΦQ' degron motif recognized by TRIM7 is reminiscent of the N-end degron system and is found in ~1% of cellular proteins. These features, together with TRIM7's restricted tissue expression and lack of immune regulation, suggest that viral restriction may not be its physiological function.


Subject(s)
Caliciviridae Infections , Glutamine , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , 3C Viral Proteases , Enterovirus , Humans , Norovirus , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/genetics
13.
Sci Adv ; 7(11)2021 03.
Article in English | MEDLINE | ID: mdl-33692109

ABSTRACT

HIV virion assembly begins with the construction of an immature lattice consisting of Gag hexamers. Upon virion release, protease-mediated Gag cleavage leads to a maturation event in which the immature lattice disassembles and the mature capsid assembles. The cellular metabolite inositiol hexakisphosphate (IP6) and maturation inhibitors (MIs) both bind and stabilize immature Gag hexamers, but whereas IP6 promotes virus maturation, MIs inhibit it. Here we show that HIV is evolutionarily constrained to maintain an immature lattice stability that ensures IP6 packaging without preventing maturation. Replication-deficient mutant viruses with reduced IP6 recruitment display increased infectivity upon treatment with the MI PF46396 (PF96) or the acquisition of second-site compensatory mutations. Both PF96 and second-site mutations stabilise the immature lattice and restore IP6 incorporation, suggesting that immature lattice stability and IP6 binding are interdependent. This IP6 dependence suggests that modifying MIs to compete with IP6 for Gag hexamer binding could substantially improve MI antiviral potency.

14.
Cell Stem Cell ; 27(6): 951-961.e5, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33113348

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, leads to respiratory symptoms that can be fatal. However, neurological symptoms have also been observed in some patients. The cause of these complications is currently unknown. Here, we use human-pluripotent-stem-cell-derived brain organoids to examine SARS-CoV-2 neurotropism. We find expression of viral receptor ACE2 in mature choroid plexus cells expressing abundant lipoproteins, but not in neurons or other cell types. We challenge organoids with SARS-CoV-2 spike pseudovirus and live virus to demonstrate viral tropism for choroid plexus epithelial cells but little to no infection of neurons or glia. We find that infected cells are apolipoprotein- and ACE2-expressing cells of the choroid plexus epithelial barrier. Finally, we show that infection with SARS-CoV-2 damages the choroid plexus epithelium, leading to leakage across this important barrier that normally prevents entry of pathogens, immune cells, and cytokines into cerebrospinal fluid and the brain.


Subject(s)
Blood-Brain Barrier/virology , Choroid Plexus/virology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Models, Biological , Organoids/virology , Vero Cells , Viral Tropism , Virus Internalization
15.
Cell Rep ; 29(12): 3983-3996.e4, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31851928

ABSTRACT

HIV-1 hijacks host proteins to promote infection. Here we show that HIV is also dependent upon the host metabolite inositol hexakisphosphate (IP6) for viral production and primary cell replication. HIV-1 recruits IP6 into virions using two lysine rings in its immature hexamers. Mutation of either ring inhibits IP6 packaging and reduces viral production. Loss of IP6 also results in virions with highly unstable capsids, leading to a profound loss of reverse transcription and cell infection. Replacement of one ring with a hydrophobic isoleucine core restores viral production, but IP6 incorporation and infection remain impaired, consistent with an independent role for IP6 in stable capsid assembly. Genetic knockout of biosynthetic kinases IPMK and IPPK reveals that cellular IP6 availability limits the production of diverse lentiviruses, but in the absence of IP6, HIV-1 packages IP5 without loss of infectivity. Together, these data suggest that IP6 is a critical cofactor for HIV-1 replication.


Subject(s)
Capsid/metabolism , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , Phytic Acid/metabolism , Virus Assembly , Virus Replication , Capsid/chemistry , HIV Infections/metabolism , HIV Infections/pathology , HeLa Cells , Humans , Protein Conformation
16.
Nat Commun ; 10(1): 4502, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582740

ABSTRACT

The cytosolic antibody receptor TRIM21 possesses unique ubiquitination activity that drives broad-spectrum anti-pathogen targeting and underpins the protein depletion technology Trim-Away. This activity is dependent on formation of self-anchored, K63-linked ubiquitin chains by the heterodimeric E2 enzyme Ube2N/Ube2V2. Here we reveal how TRIM21 facilitates ubiquitin transfer and differentiates this E2 from other closely related enzymes. A tri-ionic motif provides optimally distributed anchor points that allow TRIM21 to wrap an Ube2N~Ub complex around its RING domain, locking the closed conformation and promoting ubiquitin discharge. Mutation of these anchor points inhibits ubiquitination with Ube2N/Ube2V2, viral neutralization and immune signalling. We show that the same mechanism is employed by the anti-HIV restriction factor TRIM5 and identify spatially conserved ionic anchor points in other Ube2N-recruiting RING E3s. The tri-ionic motif is exclusively required for Ube2N but not Ube2D1 activity and provides a generic E2-specific catalysis mechanism for RING E3s.


Subject(s)
Lysine/metabolism , Ribonucleoproteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination/physiology , Amino Acid Motifs/genetics , Antiviral Restriction Factors , Biocatalysis , Crystallography, X-Ray , HEK293 Cells , HeLa Cells , Humans , Models, Molecular , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding/genetics , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligases/metabolism
17.
Viruses ; 10(11)2018 11 15.
Article in English | MEDLINE | ID: mdl-30445742

ABSTRACT

The mechanisms that drive formation of the HIV capsid, first as an immature particle and then as a mature protein shell, remain incompletely understood. Recent discoveries of positively-charged rings in the immature and mature protein hexamer subunits that comprise them and their binding to the cellular metabolite inositol hexakisphosphate (IP6) have stimulated exciting new hypotheses. In this paper, we discuss how data from multiple structural and biochemical approaches are revealing potential roles for IP6 in the HIV-1 replication cycle from assembly to uncoating.


Subject(s)
Capsid/metabolism , HIV-1/physiology , Phytic Acid/metabolism , Virus Assembly , Virus Uncoating
18.
Elife ; 72018 05 31.
Article in English | MEDLINE | ID: mdl-29848441

ABSTRACT

The HIV capsid is semipermeable and covered in electropositive pores that are essential for viral DNA synthesis and infection. Here, we show that these pores bind the abundant cellular polyanion IP6, transforming viral stability from minutes to hours and allowing newly synthesised DNA to accumulate inside the capsid. An arginine ring within the pore coordinates IP6, which strengthens capsid hexamers by almost 10°C. Single molecule measurements demonstrate that this renders native HIV capsids highly stable and protected from spontaneous collapse. Moreover, encapsidated reverse transcription assays reveal that, once stabilised by IP6, the accumulation of new viral DNA inside the capsid increases >100 fold. Remarkably, isotopic labelling of inositol in virus-producing cells reveals that HIV selectively packages over 300 IP6 molecules per infectious virion. We propose that HIV recruits IP6 to regulate capsid stability and uncoating, analogous to picornavirus pocket factors. HIV-1/IP6/capsid/co-factor/reverse transcription.


Subject(s)
Capsid/metabolism , DNA, Viral/biosynthesis , HIV-1/metabolism , Polymers/metabolism , Adenosine Triphosphate/metabolism , Capsid/ultrastructure , HEK293 Cells , HIV-1/ultrastructure , Humans , Nucleotides/metabolism , Polyelectrolytes , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcription/drug effects , Reverse Transcription/genetics , Subtilisin/metabolism , Virion/drug effects , Virion/metabolism , Virus Assembly/drug effects
19.
Elife ; 72018 04 18.
Article in English | MEDLINE | ID: mdl-29667579

ABSTRACT

Cell surface Fc receptors activate inflammation and are tightly controlled to prevent autoimmunity. Antibodies also simulate potent immune signalling from inside the cell via the cytosolic antibody receptor TRIM21, but how this is regulated is unknown. Here we show that TRIM21 signalling is constitutively repressed by its B-Box domain and activated by phosphorylation. The B-Box occupies an E2 binding site on the catalytic RING domain by mimicking E2-E3 interactions, inhibiting TRIM21 ubiquitination and preventing immune activation. TRIM21 is derepressed by IKKß and TBK1 phosphorylation of an LxxIS motif in the RING domain, at the interface with the B-Box. Incorporation of phosphoserine or a phosphomimetic within this motif relieves B-Box inhibition, promoting E2 binding, RING catalysis, NF-κB activation and cytokine transcription upon infection with DNA or RNA viruses. These data explain how intracellular antibody signalling is regulated and reveal that the B-Box is a critical regulator of RING E3 ligase activity.


Subject(s)
Gene Expression Regulation , Protein Processing, Post-Translational , Receptors, Fc/metabolism , Ribonucleoproteins/metabolism , Signal Transduction , Animals , Cell Line , Humans , I-kappa B Kinase/metabolism , Mice , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
20.
Cell Rep ; 8(4): 999-1005, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25131202

ABSTRACT

The RING domain proteins BRCA1 and BARD1 comprise a heterodimeric ubiquitin (E3) ligase that is required for the accumulation of ubiquitin conjugates at sites of DNA damage and for silencing at DNA satellite repeat regions. Despite its links to chromatin, the substrate and underlying function of the BRCA1/BARD1 ubiquitin ligase remain unclear. Here, we show that BRCA1/BARD1 specifically ubiquitylates histone H2A in its C-terminal tail on lysines 127 and 129 in vitro and in vivo. The specificity for K127-129 is acquired only when H2A is within a nucleosomal context. Moreover, site-specific targeting of the BRCA1/BARD1 RING domains to chromatin is sufficient for H2Aub foci formation in vivo. Our data establish BRCA1/BARD1 as a histone-H2A-specific E3 ligase, helping to explain its localization and activities on chromatin in cells.


Subject(s)
BRCA1 Protein/physiology , Histones/metabolism , Ubiquitin-Protein Ligases/physiology , Ubiquitination , Amino Acid Sequence , Animals , Catalytic Domain , Chickens , HEK293 Cells , HeLa Cells , Humans , Molecular Sequence Data , Nucleosomes/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL