Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nature ; 621(7980): 840-848, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674084

ABSTRACT

In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.


Subject(s)
Butyrophilins , Lymphocyte Activation , Phosphoproteins , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes , Animals , Humans , Antigens, CD/immunology , Antigens, CD/metabolism , Butyrophilins/immunology , Butyrophilins/metabolism , Camelids, New World/immunology , Molecular Dynamics Simulation , Phosphoproteins/immunology , Phosphoproteins/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular , Thermodynamics
2.
Immunity ; 50(4): 1043-1053.e5, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30902636

ABSTRACT

Human Vγ9Vδ2 T cells respond to microbial infections and malignancy by sensing diphosphate-containing metabolites called phosphoantigens, which bind to the intracellular domain of butyrophilin 3A1, triggering extracellular interactions with the Vγ9Vδ2 T cell receptor (TCR). Here, we examined the molecular basis of this "inside-out" triggering mechanism. Crystal structures of intracellular butyrophilin 3A proteins alone or in complex with the potent microbial phosphoantigen HMBPP or a synthetic analog revealed key features of phosphoantigens and butyrophilins required for γδ T cell activation. Analyses with chemical probes and molecular dynamic simulations demonstrated that dimerized intracellular proteins cooperate in sensing HMBPP to enhance the efficiency of γδ T cell activation. HMBPP binding to butyrophilin doubled the binding force between a γδ T cell and a target cell during "outside" signaling, as measured by single-cell force microscopy. Our findings provide insight into the "inside-out" triggering of Vγ9Vδ2 T cell activation by phosphoantigen-bound butyrophilin, facilitating immunotherapeutic drug design.


Subject(s)
Antigens, CD/chemistry , Butyrophilins/chemistry , Lymphocyte Activation , Organophosphates/metabolism , T-Lymphocyte Subsets/immunology , Antigens, CD/metabolism , Binding Sites , Butyrophilins/metabolism , Crystallography, X-Ray , Dimerization , Drug Design , Humans , Hydrogen Bonding , Immunotherapy , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Conformation , Protein Domains , Protein Isoforms/chemistry , Protein Processing, Post-Translational , Receptors, Antigen, T-Cell, gamma-delta , Single-Cell Analysis , Structure-Activity Relationship , T-Lymphocyte Subsets/metabolism
3.
Proteins ; 90(3): 776-790, 2022 03.
Article in English | MEDLINE | ID: mdl-34739144

ABSTRACT

Lipid transporters play an important role in most if not all organisms, ranging from bacteria to humans. For example, in Mycobacterium tuberculosis, the trehalose monomycolate transporter MmpL3 is involved in cell wall biosynthesis, while in humans, cholesterol transporters are involved in normal cell function as well as in disease. Here, using structural and bioinformatics information, we propose that there are proteins that also contain "MmpL3-like" (MMPL) transmembrane (TM) domains in many protozoa, including Trypanosoma cruzi, as well as in the bacterium Staphylococcus aureus, where the fatty acid transporter FarE has the same set of "active-site" residues as those found in the mycobacterial MmpL3s, and in T. cruzi. We also show that there are strong sequence and predicted structural similarities between the TM proton-translocation domain seen in the X-ray structures of mycobacterial MmpL3s and several human as well as fungal lipid transporters, leading to the proposal that there are similar proteins in apicomplexan parasites, and in plants. The animal, fungal, apicomplexan, and plant proteins have larger extra-membrane domains than are found in the bacterial MmpL3, but they have a similar TM domain architecture, with the introduction of a (catalytically essential) Phe > His residue change, and a Ser/Thr H-bond network, involved in H+ -transport. Overall, the results are of interest since they show that MMPL-family proteins are present in essentially all life forms: archaea, bacteria, protozoa, fungi, plants and animals and, where known, they are involved in "lipid" (glycolipid, phospholipid, sphingolipid, fatty acid, cholesterol, ergosterol) transport, powered by transmembrane molecular pumps having similar structures.


Subject(s)
Bacterial Proteins/chemistry , Cord Factors/chemistry , Membrane Transport Proteins/chemistry , Mycobacterium tuberculosis/metabolism , Amino Acid Sequence , Biological Transport , Catalytic Domain , Cholesterol/chemistry , Fungi , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Staphylococcus aureus , Structure-Activity Relationship , Trypanosoma cruzi
4.
Chembiochem ; 21(8): 1201-1205, 2020 04 17.
Article in English | MEDLINE | ID: mdl-31709695

ABSTRACT

Although sulfur dioxide (SO2 ) finds widespread use in the food industry as its hydrated sulfite form, a number of aspects of SO2 biology remain to be completely understood. Of the tools available for intracellular enhancement of SO2 levels, most suffer from poor cell permeability and a lack of control over SO2 release. We report 1,2-cyclic sulfite diesters as a new class of reliable SO2 donors that dissociate in buffer through nucleophilic displacement to produce SO2 with tunable release profiles. We provide data in support of the suitability of these SO2 donors to enhance intracellular SO2 levels more efficiently than sodium bisulfite, the most commonly used SO2 donor for cellular studies.


Subject(s)
Colonic Neoplasms/metabolism , Esters/chemical synthesis , Sulfites/chemical synthesis , Sulfur Dioxide/metabolism , Colonic Neoplasms/pathology , Humans , Tumor Cells, Cultured
5.
Biochem Biophys Res Commun ; 511(4): 800-805, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30837154

ABSTRACT

The antibiotic moenomycin A is a phosphoglycerate derivative with a C25-moenocinyl chain and a branched oligosaccharide. Formation of the C25-chain is catalyzed by the enzyme MoeN5 with geranyl pyrophosphate (GPP) and the sugar-linked 2-Z,E-farnesyl-3-phosphoglycerate (FPG) as its substrates. Previous complex crystal structures with GPP and long-chain alkyl glycosides suggested that GPP binds to the S1 site in a similar way as in most other α-helical prenyltransferases (PTs), and FPG is likely to assume a bent conformation in the S2 site. However, two FPG derivatives synthesized in the current study were found in the S1 site rather than S2 in their complex crystal structures with MoeN5. Apparently S1 is the preferred site for prenyl-containing ligand, and S2 binding may proceed only after S1 is occupied. Thus, like most trans-type PTs, MoeN5 may employ a sequential ionization-condensation-elimination mechanism that involves a carbocation intermediate.


Subject(s)
Bacterial Proteins/metabolism , Dimethylallyltranstransferase/metabolism , Streptomyces/metabolism , 2,3-Diphosphoglycerate/chemistry , 2,3-Diphosphoglycerate/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bambermycins/metabolism , Crystallography, X-Ray , Dimethylallyltranstransferase/chemistry , Molecular Docking Simulation , Protein Conformation , Sequence Alignment , Streptomyces/chemistry , Substrate Specificity
6.
Biochem Biophys Res Commun ; 512(3): 517-523, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30904161

ABSTRACT

Invasive aspergillosis (IA) is a life-threatening disease impacting immunocompromised individuals. Standard treatments of IA, including polyenes and azoles, suffer from high toxicity and emerging resistance, leading to the need to develop new antifungal agents with novel mechanisms of action. Ergosterol biosynthesis is a classic target for antifungals, and squalene synthase (SQS) catalyzes the first committed step in ergosterol biosynthesis in Aspergillus spp. making SQS of interest in the context of antifungal development. Here, we cloned, expressed, purified and characterized SQS from the pathogen Aspergillus flavus (AfSQS), confirming that it produced squalene. To identify potential leads targeting AfSQS, we tested known squalene synthase inhibitors, zaragozic acid and the phosphonosulfonate BPH-652, finding that they were potent inhibitors. We then screened a library of 744 compounds from the National Cancer Institute (NCI) Diversity Set V for inhibition activity. 20 hits were identified and IC50 values were determined using dose-response curves. 14 compounds that interfered with the assay were excluded and the remaining 6 compounds were analyzed for drug-likeness, resulting in one compound, celastrol, which had an AfSQS IC50 value of 830 nM. Enzyme inhibition kinetics revealed that celastrol binds to AfSQS in a noncompetitive manner, but did not bind covalently. Since celastrol is also known to inhibit growth of the highly virulent Aspergillus fumigatus by inhibiting flavin-dependent monooxygenase siderophore A (SidA, under iron starvation conditions), it may be a promising multi-target lead for antifungal development.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus flavus/enzymology , Enzyme Inhibitors/pharmacology , Farnesyl-Diphosphate Farnesyltransferase/antagonists & inhibitors , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cloning, Molecular , Farnesyl-Diphosphate Farnesyltransferase/genetics , Humans , Models, Molecular , Molecular Targeted Therapy , Pentacyclic Triterpenes , Tricarboxylic Acids/pharmacology , Triterpenes/pharmacology
7.
J Am Chem Soc ; 140(24): 7568-7578, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29787268

ABSTRACT

Bisphosphonates are a major class of drugs used to treat osteoporosis, Paget's disease, and cancer. They have been proposed to act by inhibiting one or more targets including protein prenylation, the epidermal growth factor receptor, or the adenine nucleotide translocase. Inhibition of the latter is due to formation in cells of analogs of ATP: the isopentenyl ester of ATP (ApppI) or an AppXp-type analog of ATP, such as AMP-clodronate (AppCCl2p). We screened both ApppI as well as AppCCl2p against a panel of 369 kinases finding potent inhibition of some tyrosine kinases by AppCCl2p, attributable to formation of a strong hydrogen bond between tyrosine and the terminal phosphonate. We then synthesized bisphosphonate preprodrugs that are converted in cells to other ATP-analogs, finding low nM kinase inhibitors that inhibited cell signaling pathways. These results help clarify our understanding of the mechanisms of action of bisphosphonates, potentially opening up new routes to the development of bone resorption, anticancer, and anti-inflammatory drug leads.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Diphosphonates/pharmacology , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Adenosine Triphosphate/chemical synthesis , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/pharmacology , Cell Line, Tumor , Diphosphonates/chemical synthesis , Diphosphonates/chemistry , Humans , Hydrogen Bonding , Models, Chemical , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors
8.
Angew Chem Int Ed Engl ; 57(3): 683-687, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29215779

ABSTRACT

We report the first X-ray crystallographic structure of the "head-to-middle" prenyltransferase, isosesquilavandulyl diphosphate synthase, involved in biosynthesis of the merochlorin class of antibiotics. The protein adopts the ζ or cis-prenyl transferase fold but remarkably, unlike tuberculosinol adenosine synthase and other cis-prenyl transferases (e.g. cis-farnesyl, decaprenyl, undecaprenyl diphosphate synthases), the large, hydrophobic side chain does not occupy a central hydrophobic tunnel. Instead, it occupies a surface pocket oriented at 90° to the hydrophobic tunnel. Product chain-length control is achieved by squeezing out the ligand from the conventional allylic S1 binding site, with proton abstraction being achieved using a diphosphate-Asn-Ser relay. The structures revise and unify our thinking as to the mechanism of action of many other prenyl transferases and may also be of use in engineering new merochlorin-class antibiotics.

9.
Angew Chem Int Ed Engl ; 55(15): 4716-20, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26954060

ABSTRACT

The structure of MoeN5, a unique prenyltransferase involved in the biosynthesis of the antibiotic moenomycin, is reported. MoeN5 catalyzes the reaction of geranyl diphosphate (GPP) with the cis-farnesyl group in phosphoglycolipid 5 to form the (C25) moenocinyl-sidechain-containing lipid 7. GPP binds to an allylic site (S1) and aligns well with known S1 inhibitors. Alkyl glycosides, glycolipids, can bind to both S1 and a second site, S2. Long sidechains in S2 are "bent" and co-locate with the homoallylic substrate isopentenyl diphosphate in other prenyltransferases. These observations support a MoeN5 mechanism in which 5 binds to S2 with its C6-C11 group poised to attack C1 in GPP to form the moenocinyl sidechain, with the more distal regions of 5 aligning with the distal glucose in decyl maltoside. The results are of general interest because they provide the first structures of MoeN5 and a structural basis for its mechanism of action, results that will facilitate the design of new antibiotics.


Subject(s)
Dimethylallyltranstransferase/metabolism , Oligosaccharides/biosynthesis , Dimethylallyltranstransferase/chemistry , Models, Molecular , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 25(13): 2694-7, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25981687

ABSTRACT

Drug resistant infections are becoming common worldwide and new strategies for drug development are necessary. Here, we report the synthesis and evaluation of 2,4-dinitrophenylsulfonamides, which are donors of sulfur dioxide (SO2), a reactive sulfur species, as methicillin-resistant Staphylococcus aureus (MRSA) inhibitors. N-(3-Methoxyphenyl)-2,4-dinitro-N-(prop-2-yn-1-yl)benzenesulfonamide (5e) was found to have excellent in vitro MRSA inhibitory potency. This compound is cell permeable and treatment of MRSA cells with 5e depleted intracellular thiols and enhanced oxidative species both results consistent with a mechanism involving thiol activation to produce SO2.


Subject(s)
Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Prodrugs/pharmacology , Sulfur Dioxide/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Drug Design , Humans , Microbial Sensitivity Tests , Prodrugs/chemical synthesis , Prodrugs/chemistry , Staphylococcal Infections/drug therapy , Structure-Activity Relationship , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology , Sulfur Dioxide/chemistry
11.
Org Biomol Chem ; 13(8): 2399-406, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25563212

ABSTRACT

Sulfur dioxide (SO2) is a gaseous environmental pollutant which is routinely used in industry as a preservative and antimicrobial. Recent data suggests that SO2 may have value as a therapeutic agent. However, due to its gaseous nature, localizing SO2 generation is challenging. Herein, various 1,3-dihydrobenzo[c]thiophene 2,2-dioxides (benzosulfones) were prepared as candidates for photochemically activated sulfur dioxide (SO2) generation. These compounds were found to be stable in buffer but were photolysed upon irradiation with UV light to generate SO2. Our data indicates that photolysis of benzosulfones depends on substituents, and that the presence of electron donating groups results in an enhanced yield of SO2.

12.
Angew Chem Int Ed Engl ; 54(51): 15478-15482, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26768532

ABSTRACT

Structures of the iridoid synthase nepetalactol synthase in the presence of NAD(+) , NADPH or NAD(+) /10-oxogeranial were solved. The 10-oxogeranial substrate binds in a transoid-O1-C3 conformation and can be reduced by hydride addition to form the byproduct S-10-oxo-citronellal. Tyr178 Oζ is positioned 2.5 Šfrom the substrate O1 and provides the second proton required for reaction. Nepetalactol product formation requires rotation about C1-C2 to form the cisoid isomer, leading to formation of the cis-enolate, together with rotation about C4-C5, which enables cyclization and lactol production. The structure is similar to that of progesterone-5ß-reductase, with almost identical positioning of NADP, Lys146(147), Tyr178(179), and F342(343), but only Tyr178 and Phe342 appear to be essential for activity. The transoid 10-oxogeranial structure also serves as a model for ß-face hydride attack in progesterone 5ß-reductases and is of general interest in the context of asymmetric synthesis.


Subject(s)
Apocynaceae/enzymology , Iridoids/chemistry , Ligases/chemistry , Monoterpenes/chemistry , NADP/chemistry , NAD/chemistry , Acyclic Monoterpenes , Models, Molecular , Molecular Structure
13.
J Med Chem ; 66(11): 7553-7569, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37235809

ABSTRACT

We tested a series of SQ109 analogues against Mycobacterium tuberculosis and M. smegmatis, in addition to determining their uncoupling activity. We then investigated potential protein targets, involved in quinone and cell wall biosynthesis, using "rescue" experiments. There was little effect of menaquinone on growth inhibition by SQ109, but there were large increases in the IC50 of SQ109 and its analogues (up to 20×) on addition of undecaprenyl phosphate (Up), a homologue of the mycobacterial decaprenyl (C50) diphosphate. Inhibition of an undecaprenyl diphosphate phosphatase, an ortholog of the mycobacterial phosphatase, correlated with cell growth inhibition, and we found that M. smegmatis cell growth inhibition could be well predicted by using uncoupler and Up-rescue results. We also investigated whether SQ109 was metabolized inside Mycobacterium tuberculosis, finding only a single metabolite, previously shown to be inactive. The results are of general interest since they help explain the mechanism of SQ109 in mycobacteria.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism , Diphosphates/pharmacology , Tuberculosis/drug therapy , Tuberculosis/microbiology , Mycobacterium smegmatis
14.
ACS Infect Dis ; 9(2): 342-364, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36706233

ABSTRACT

SQ109 is a tuberculosis drug candidate that has high potency against Mycobacterium tuberculosis and is thought to function at least in part by blocking cell wall biosynthesis by inhibiting the MmpL3 transporter. It also has activity against bacteria and protozoan parasites that lack MmpL3, where it can act as an uncoupler, targeting lipid membranes and Ca2+ homeostasis. Here, we synthesized 18 analogs of SQ109 and tested them against M. smegmatis, M. tuberculosis, M. abscessus, Bacillus subtilis, and Escherichia coli, as well as against the protozoan parasites Trypanosoma brucei, T. cruzi, Leishmania donovani, L. mexicana, and Plasmodium falciparum. Activity against the mycobacteria was generally less than with SQ109 and was reduced by increasing the size of the alkyl adduct, but two analogs were ∼4-8-fold more active than SQ109 against M. abscessus, including a highly drug-resistant strain harboring an A309P mutation in MmpL3. There was also better activity than found with SQ109 with other bacteria and protozoa. Of particular interest, we found that the adamantyl C-2 ethyl, butyl, phenyl, and benzyl analogs had 4-10× increased activity against P. falciparum asexual blood stages, together with low toxicity to a human HepG2 cell line, making them of interest as new antimalarial drug leads. We also used surface plasmon resonance to investigate the binding of inhibitors to MmpL3 and differential scanning calorimetry to investigate binding to lipid membranes. There was no correlation between MmpL3 binding and M. tuberculosis or M. smegmatis cell activity, suggesting that MmpL3 is not a major target in mycobacteria. However, some of the more active species decreased lipid phase transition temperatures, indicating increased accumulation in membranes, which is expected to lead to enhanced uncoupler activity.


Subject(s)
Malaria , Mycobacterium abscessus , Mycobacterium tuberculosis , Parasites , Tuberculosis , Animals , Humans , Antitubercular Agents/pharmacology , Parasites/metabolism , Bacterial Proteins/metabolism , Tuberculosis/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Lipids
15.
Bioorg Med Chem Lett ; 22(11): 3603-6, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22572576

ABSTRACT

Here, we synthesized and studied a library of 2,4-dinitrophenylsulfonamides that closely resembled N-benzyl-2,4-dinitrophenylsulfonamide (1), a thiol-activated prodrug of sulfur dioxide (SO(2)) which has shown high potency as a Mycobacterium tuberculosis (Mtb) inhibitory agent. The ability of these compounds to generate SO(2) in the presence of a thiol was evaluated. A good correlation between pK(aH) of the corresponding amine and reactivity with thiols to generate SO(2) was found suggesting that the rate determining step of SO(2) generation involved protonation of the amine. Amongst analogues with measurable MICs, we also found a correlation between ability to generate SO(2) and Mtb growth inhibitory activity. Together, we report several thiol-mediated prodrugs of SO(2) which strongly inhibited Mtb growth (MIC <1 µg mL(-1)) with potential for further development as tuberculosis drug candidates.


Subject(s)
Antitubercular Agents/chemical synthesis , Prodrugs/chemical synthesis , Sulfur Dioxide/metabolism , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Hydrogen-Ion Concentration , Kinetics , Mycobacterium tuberculosis/drug effects , Prodrugs/chemistry , Prodrugs/pharmacology , Rats , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology
16.
ACS Omega ; 7(26): 22601-22612, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35811857

ABSTRACT

There is interest in the development of drugs to treat fungal infections due to the increasing threat of drug resistance, and here, we report the first crystallographic structure of the catalytic domain of a fungal squalene synthase (SQS), Aspergillus flavus SQS (AfSQS), a potential drug target, together with a bioinformatics study of fungal, human, and protozoal SQSs. Our X-ray results show strong structural similarities between the catalytic domains in these proteins, but, remarkably, using bioinformatics, we find that there is also a large, highly polar helix in the fungal proteins that connects the catalytic and membrane-anchoring transmembrane domains. This polar helix is absent in squalene synthases from all other lifeforms. We show that the transmembrane domain in AfSQS and in other SQSs, stannin, and steryl sulfatase, have very similar properties (% polar residues, hydrophobicity, and hydrophobic moment) to those found in the "penultimate" C-terminal helical domain in squalene epoxidase, while the final C-terminal domain in squalene epoxidase is more polar and may be monotopic. We also propose structural models for full-length AfSQS based on the bioinformatics results as well as a deep learning program that indicate that the C-terminus region may also be membrane surface-associated. Taken together, our results are of general interest given the unique nature of the polar helical domain in fungi that may be involved in protein-protein interactions as well as being a future target for antifungals.

17.
Biomedicines ; 10(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35327472

ABSTRACT

SQ109 is an anti-tubercular drug candidate that has completed Phase IIb/III clinical trials for tuberculosis and has also been shown to exhibit potent in vitro efficacy against protozoan parasites including Leishmania and Trypanosoma cruzi spp. However, its in vivo efficacy against protozoa has not been reported. Here, we evaluated the activity of SQ109 in mouse models of Leishmania, Trypanosoma spp. as well as Toxoplasma infection. In the T. cruzi mouse model, 80% of SQ109-treated mice survived at 40 days post-infection. Even though SQ109 did not cure all mice, these results are of interest since they provide a basis for future testing of combination therapies with the azole posaconazole, which acts synergistically with SQ109 in vitro. We also found that SQ109 inhibited the growth of Toxoplasma gondii in vitro with an IC50 of 1.82 µM and there was an 80% survival in mice treated with SQ109, whereas all untreated animals died 10 days post-infection. Results with Trypanosoma brucei and Leishmania donovani infected mice were not promising with only moderate efficacy. Since SQ109 is known to be extensively metabolized in animals, we investigated the activity in vitro of SQ109 metabolites. Among 16 metabolites, six mono-oxygenated forms were found active across the tested protozoan parasites, and there was a ~6× average decrease in activity of the metabolites as compared to SQ109 which is smaller than the ~25× found with mycobacteria.

18.
mBio ; 13(5): e0196622, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36129297

ABSTRACT

Prenyldiphosphate synthases catalyze the reaction of allylic diphosphates with one or more isopentenyl diphosphate molecules to form compounds such as farnesyl diphosphate, used in, e.g., sterol biosynthesis and protein prenylation, as well as longer "polyprenyl" diphosphates, used in ubiquinone and menaquinone biosynthesis. Quinones play an essential role in electron transport and are associated with the inner mitochondrial membrane due to the presence of the polyprenyl group. In this work, we investigated the synthesis of the polyprenyl diphosphate that alkylates the ubiquinone ring precursor in Toxoplasma gondii, an opportunistic pathogen that causes serious disease in immunocompromised patients and the unborn fetus. The enzyme that catalyzes this early step of the ubiquinone synthesis is Coq1 (TgCoq1), and we show that it produces the C35 species heptaprenyl diphosphate. TgCoq1 localizes to the mitochondrion and is essential for in vitro T. gondii growth. We demonstrate that the growth defect of a T. gondii TgCoq1 mutant is rescued by complementation with a homologous TgCoq1 gene or with a (C45) solanesyl diphosphate synthase from Trypanosoma cruzi (TcSPPS). We find that a lipophilic bisphosphonate (BPH-1218) inhibits T. gondii growth at low-nanomolar concentrations, while overexpression of the TgCoq1 enzyme dramatically reduced growth inhibition by the bisphosphonate. Both the severe growth defect of the mutant and the inhibition by BPH-1218 were rescued by supplementation with a long-chain (C30) ubiquinone (UQ6). Importantly, BPH-1218 also protected mice against a lethal T. gondii infection. TgCoq1 thus represents a potential drug target that could be exploited for improved chemotherapy of toxoplasmosis. IMPORTANCE Millions of people are infected with Toxoplasma gondii, and the available treatment for toxoplasmosis is not ideal. Most of the drugs currently used are only effective for the acute infection, and treatment can trigger serious side effects requiring changes in the therapeutic approach. There is, therefore, a compelling need for safe and effective treatments for toxoplasmosis. In this work, we characterize an enzyme of the mitochondrion of T. gondii that can be inhibited by an isoprenoid pathway inhibitor. We present evidence that demonstrates that inhibition of the enzyme is linked to parasite death. In addition, the inhibitor can protect mice against a lethal dose of T. gondii. Our results thus reveal a promising chemotherapeutic target for the development of new medicines for toxoplasmosis.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , Mice , Diphosphates/metabolism , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Sterols , Toxoplasmosis/drug therapy , Toxoplasmosis/prevention & control , Ubiquinone , Vitamin K 2/pharmacology
19.
ACS Infect Dis ; 7(8): 2492-2507, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34279904

ABSTRACT

SQ109 is a drug candidate for the treatment of tuberculosis (TB). It is thought to target primarily the protein MmpL3 in Mycobacterium tuberculosis, but it also inhibits the growth of some other bacteria. SQ109 is metabolized by the liver, and it has been proposed that some of its metabolites might be responsible for its activity against TB. Here, we synthesized six potential P450 metabolites of SQ109 and used these as well as 10 other likely metabolites as standards in a mass spectrometry study of M. tuberculosis-infected rabbits treated with SQ109, in addition to testing all 16 putative metabolites for antibacterial activity. We found that there were just two major metabolites in lung tissue: a hydroxy-adamantyl analog of SQ109 and N'-adamantylethylenediamine. Neither of these, or the other potential metabolites tested, inhibited the growth of M. tuberculosis or of M. smegmatis, Bacillus subtilis, or E. coli, making it unlikely that an SQ109 metabolite contributes to its antibacterial activity. In the rabbit TB model, it is thus the gradual accumulation of nonmetabolized SQ109 in tissues to therapeutic levels that leads to good efficacy. Our results also provide new insights into how SQ109 binds to its target MmpL3, based on our mass spectroscopy results which indicate that the charge in SQ109 is primarily localized on the geranyl nitrogen, explaining the very short distance to a key Asp found in the X-ray structure of SQ109 bound to MmpL3.


Subject(s)
Mycobacterium tuberculosis , Pharmaceutical Preparations , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Escherichia coli , Rabbits , Tuberculosis/drug therapy
20.
ACS Infect Dis ; 6(7): 1563-1566, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32478500

ABSTRACT

Pandemics such as influenza, smallpox, and plague have caused the loss of hundreds of millions of lives and have occurred for many centuries. Fortunately, they have been largely eliminated by the use of vaccinations and drugs. More recently, Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and now Coronavirus Disease 2019 (COVID-19) have arisen, and given the current absence of highly effective approved vaccines or drugs, brute-force approaches involving physical barriers are being used to counter virus spread. A major basis for physical protection from respiratory infections is eye, nose, and mouth protection. However, eye protection with goggles is problematic due to "fogging", while nose/mouth protection is complicated by the breathing difficulties associated with non-valved respirators. Here, we give a brief review of the origins and development of face masks and eye protection to counter respiratory infections on the basis of experiments conducted 100 years ago, work that was presaged by the first use of personal protective equipment, "PPE", by the plague doctors of the 17th Century. The results of the review lead to two conclusions: first, that eye protection using filtered eye masks be used to prevent ocular transmission; second, that new, pre-filtered, valved respirators be used to even more effectively block viral transmission.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Eye Protective Devices/history , Infection Control/instrumentation , Infection Control/methods , Masks/history , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Severe Acute Respiratory Syndrome/prevention & control , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , History, 17th Century , History, 20th Century , History, 21st Century , Humans , Infection Control/history , Influenza Pandemic, 1918-1919/history , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/history , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL