Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Parasitol Res ; 122(9): 2079-2089, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37401931

ABSTRACT

The present study aimed to investigate an outbreak of Theileria annulata (T. annulata) infection in an organized dairy cattle farm in Madhya Pradesh, India, using clinical and molecular techniques. Following the deaths of two crossbred cattle in March 2021, 43 blood samples were collected from infected and apparently healthy animals and examined by blood smear and polymerase chain reaction (PCR) techniques. The blood smear examination showed that 23.25% of samples were positive for Theileria organisms, while conventional PCR targeting the 18S ribosomal RNA (18S rRNA) and T. annulata merozoite surface antigen-1 (TAMS-1) genes revealed that 32.55% of samples were positive for T. annulata. PCR targeting cytochrome b (Cytb) gene showed 46.51% of samples were positive for T. annulata. Haematological analysis confirmed clinical signs of infection in affected animals, which were treated with buparvaquone @ 2.5 mg/kg body weight intramuscularly along with supportive medicine. Two 18S rRNA gene amplicons were sequenced and analysed in a phylogenetic tree and haplotype network with 54 Indian and 38 foreign sequences. The phylogenetic tree revealed two groups with a high posterior probability and bootstrap value, while the haplotype network revealed 35 haplotypes, with haplotype 1 (H1) being the most abundant and several single haplotypes clustering around it, indicating fast and widespread expansion. Genetic diversity indices and neutrality tests confirmed that the population was expanding. These studies highlight the significance of prompt and precise diagnosis and management of T. annulata outbreaks and provide insights into its evolutionary history and population dynamics of T. annulata in India, which could aid improving disease preventive and control strategies.


Subject(s)
Cattle Diseases , Theileria annulata , Theileriasis , Cattle , Animals , Theileriasis/epidemiology , Phylogeny , Farms , Theileria annulata/genetics , RNA, Ribosomal, 18S/genetics , India/epidemiology , Disease Outbreaks/veterinary , Cattle Diseases/epidemiology
2.
Prog Biophys Mol Biol ; 193: 7-18, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39237013

ABSTRACT

Animal diseases are a major concern to animal welfare, human health and the global economy. Early detection, prevention and control of these animal diseases are crucial to ensure sustainability of livestock sector, to reduce farm losses and protecting public health. Points of care (POC) devices are small, portable instruments that provide rapid results thus reduce the risk of disease transmission and enable early intervention. CRISPR based diagnostics offer more accurate and efficient solution for monitoring animal health due to their quick response, can detect very low level of pathogenic organism or disease markers and specificity. These diagnostics are particularly useful in the in area with limited resources or access to common diagnostic methods, especially in developing countries. The ability of electrochemical sensors to detect accurately very low analyte concentration makes them suitable for POC diagnostics and field application. CRISPR base electrochemical biosensors show great potential in revolutionizing disease detection and diagnosis including animal health. However, challenges, such as achieving selectivity and sensitivity, need to be addressed to enhance the competitiveness of these biosensors. Currently, most CRISPR based bioassay research focuses on nucleic acid target detection, but researchers exploring to monitor small organic/inorganic non-nucleic acid molecules like toxins and proteins. Emerging diagnostics would be centered on CRISPR-Cas system will offer great potential as an accurate, specific and effective means to identify microorganism, virus, toxins, small molecules, peptides and nucleic acid related to various animal health disorders particularly when integrated into electrochemical biosensing platform.

SELECTION OF CITATIONS
SEARCH DETAIL