Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012214

ABSTRACT

Osteoarthritis (OA) is a degenerative and heterogeneous disease that affects all types of joint structures. Current clinical treatments are only symptomatic and do not manage the degenerative process in animals or humans. One of the new orthobiological treatment strategies being developed to treat OA is the use of drug delivery systems (DDS) to release bioactive molecules over a long period of time directly into the joint to limit inflammation, control pain, and reduce cartilage degradation. Two vasoactive peptides, endothelin-1 and bradykinin, play important roles in OA pathogenesis. In this study, we investigated the effects of two functionalized nanogels as DDS. We assessed the effect of chitosan functionalized with a type A endothelin receptor antagonist (BQ-123-CHI) and/or hyaluronic acid functionalized with a type B1 bradykinin receptor antagonist (R-954-HA). The biocompatibility of these nanogels, alone or in combination, was first validated on equine articular chondrocytes cultured under different oxic conditions. Further, in an OA equine organoid model via induction with interleukin-1 beta (IL-1ß), a combination of BQ-123-CHI and R-954-HA (BR5) triggered the greatest decrease in inflammatory and catabolic markers. In basal and OA conditions, BQ-123-CHI alone or in equimolar combinations with R-954-HA had weak pro-anabolic effects on collagens synthesis. These new nanogels, as part of a composite DDS, show promising attributes for treating OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Bradykinin Receptor Antagonists/metabolism , Bradykinin Receptor Antagonists/pharmacology , Bradykinin Receptor Antagonists/therapeutic use , Cartilage/metabolism , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/metabolism , Endothelin-1/metabolism , Horses , Humans , Interleukin-1beta/metabolism , Nanogels , Organoids/metabolism , Osteoarthritis/metabolism
2.
Drug Discov Today ; 28(3): 103488, 2023 03.
Article in English | MEDLINE | ID: mdl-36623796

ABSTRACT

The burden of osteoarthritis (OA), one of the major causes of functional disabilities in humans and animals, continues to increase worldwide while no disease-modifying OA drugs (DMOADs) that either slow down or reverse disease progression have been made available. Here, we provide a brief overview of recent advances in: designing new OA drug delivery approaches, focusing on lubrication-based biomaterials and drug delivery systems, such as hydrogels, liposomes, dendrimers, micro- and nanoparticles; using either large (horse) or small (zebrafish) relevant animal models to evaluate new therapeutic strategies; and OA in vitro modeling, focusing on 3D (organoid) models of cartilage regarding the Replace, Reduce and Refine (3R) principle of animal experimentation.


Subject(s)
Osteoarthritis , Zebrafish , Humans , Animals , Horses , Osteoarthritis/drug therapy , Drug Delivery Systems
3.
Nanomaterials (Basel) ; 12(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458048

ABSTRACT

One important challenge in treating avascular-degraded cartilage is the development of new drugs for both pain management and joint preservation. Considerable efforts have been invested in developing nanosystems using biomaterials, such as chitosan, a widely used natural polymer exhibiting numerous advantages, i.e., non-toxic, biocompatible and biodegradable. However, even if chitosan is generally recognized as safe, the safety and biocompatibility of such nanomaterials must be addressed because of potential for greater interactions between nanomaterials and biological systems. Here, we developed chitosan-based nanogels as drug-delivery platforms and established an initial biological risk assessment for osteocartilaginous applications. We investigated the influence of synthesis parameters on the physicochemical characteristics of the resulting nanogels and their potential impact on the biocompatibility on all types of human osteocartilaginous cells. Monodisperse nanogels were synthesized with sizes ranging from 268 to 382 nm according to the acidic solution used (i.e., either citric or acetic acid) with overall positive charge surface. Our results demonstrated that purified chitosan-based nanogels neither affected cell proliferation nor induced nitric oxide production in vitro. However, nanogels were moderately genotoxic in a dose-dependent manner but did not significantly induce acute embryotoxicity in zebrafish embryos, up to 100 µg∙mL-1. These encouraging results hold great promise for the intra-articular delivery of drugs or diagnostic agents for joint pathologies.

SELECTION OF CITATIONS
SEARCH DETAIL