Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Crit Care ; 28(1): 63, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38414082

ABSTRACT

RATIONALE: Acute respiratory distress syndrome (ARDS) is a life-threatening critical care syndrome commonly associated with infections such as COVID-19, influenza, and bacterial pneumonia. Ongoing research aims to improve our understanding of ARDS, including its molecular mechanisms, individualized treatment options, and potential interventions to reduce inflammation and promote lung repair. OBJECTIVE: To map and compare metabolic phenotypes of different infectious causes of ARDS to better understand the metabolic pathways involved in the underlying pathogenesis. METHODS: We analyzed metabolic phenotypes of 3 ARDS cohorts caused by COVID-19, H1N1 influenza, and bacterial pneumonia compared to non-ARDS COVID-19-infected patients and ICU-ventilated controls. Targeted metabolomics was performed on plasma samples from a total of 150 patients using quantitative LC-MS/MS and DI-MS/MS analytical platforms. RESULTS: Distinct metabolic phenotypes were detected between different infectious causes of ARDS. There were metabolomics differences between ARDSs associated with COVID-19 and H1N1, which include metabolic pathways involving taurine and hypotaurine, pyruvate, TCA cycle metabolites, lysine, and glycerophospholipids. ARDSs associated with bacterial pneumonia and COVID-19 differed in the metabolism of D-glutamine and D-glutamate, arginine, proline, histidine, and pyruvate. The metabolic profile of COVID-19 ARDS (C19/A) patients admitted to the ICU differed from COVID-19 pneumonia (C19/P) patients who were not admitted to the ICU in metabolisms of phenylalanine, tryptophan, lysine, and tyrosine. Metabolomics analysis revealed significant differences between C19/A, H1N1/A, and PNA/A vs ICU-ventilated controls, reflecting potentially different disease mechanisms. CONCLUSION: Different metabolic phenotypes characterize ARDS associated with different viral and bacterial infections.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Pneumonia, Bacterial , Respiratory Distress Syndrome , Humans , COVID-19/complications , Influenza, Human/complications , Influenza, Human/therapy , Tandem Mass Spectrometry , Chromatography, Liquid , Lysine , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/therapy , Pyruvates
2.
Crit Care Med ; 50(9): 1306-1317, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35607951

ABSTRACT

OBJECTIVES: To determine whether angiotensin receptor blockers (ARBs) or angiotensin-converting enzyme (ACE) inhibitors are associated with improved outcomes in hospitalized patients with COVID-19 according to sex and to report sex-related differences in renin-angiotensin system (RAS) components. DESIGN: Prospective observational cohort study comparing the effects of ARB or ACE inhibitors versus no ARBs or ACE inhibitors in males versus females. Severe acute respiratory syndrome coronavirus 2 downregulates ACE-2, potentially increasing angiotensin II (a pro-inflammatory vasoconstrictor). Sex-based differences in RAS dysregulation may explain sex-based differences in responses to ARBs because the ACE2 gene is on the X chromosome. We recorded baseline characteristics, comorbidities, prehospital ARBs or ACE inhibitor treatment, use of organ support and mortality, and measured RAS components at admission and days 2, 4, 7, and 14 in a subgroup ( n = 46), recorded d -dimer ( n = 967), comparing males with females. SETTING: ARBs CORONA I is a multicenter Canadian observational cohort of patients hospitalized with acute COVID-19. This analysis includes patients admitted to 10 large urban hospitals across the four most populated provinces. PATIENTS: One-thousand six-hundred eighty-six patients with polymerase chain reaction-confirmed COVID-19 (February 2020 to March 2021) for acute COVID-19 illness were included. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Males on ARBs before admission had decreased use of ventilation (adjusted odds ratio [aOR] = 0.52; p = 0.007) and vasopressors (aOR = 0.55; p = 0.011) compared with males not on ARBs or ACE inhibitors. No significant effects were observed in females for these outcomes. The test for interaction was significant for use of ventilation ( p = 0.006) and vasopressors ( p = 0.044) indicating significantly different responses to ARBs according to sex. Males had significantly higher plasma ACE-1 at baseline and angiotensin II at day 7 and 14 than females. CONCLUSIONS: ARBs use was associated with less ventilation and vasopressors in males but not females. Sex-based differences in RAS dysregulation may contribute to sex-based differences in outcomes and responses to ARBs in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Hypertension , Angiotensin II/pharmacology , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Canada , Female , Humans , Male , Prospective Studies , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Sex Characteristics
3.
CMAJ Open ; 11(4): E672-E683, 2023.
Article in English | MEDLINE | ID: mdl-37527902

ABSTRACT

BACKGROUND: Omicron is the current predominant variant of concern of SARS-CoV-2. We hypothesized that vaccination alters outcomes of patients hospitalized with COVID-19 during the Omicron wave and that these patients have different characteristics and outcomes than in previous waves. METHODS: This is a substudy of the Host Response Mediators in Coronavirus (COVID-19) Infection (ARBs CORONA I) trial, which included adults admitted to hospital with acute COVID-19 up to July 2022 from 9 hospitals in British Columbia, Ontario and Quebec. We excluded emergency department visits without hospital admission, readmissions and admissions for another reason. Using adjusted regression analysis, we compared mortality and organ dysfunction between vaccinated (≥ 2 doses) and unvaccinated patients during the Omicron wave, as well as between all patients in the Omicron and first 3 waves of the COVID-19 pandemic. RESULTS: During the Omicron wave, 28-day mortality was significantly lower in vaccinated (n = 19/237) than unvaccinated hospitalized patients (n = 12/127) (adjusted odds ratio [OR] 0.36, 95% confidence interval [CI] 0.15-0.89); vaccinated patients had lower risk of admission to the intensive care unit, invasive ventilation and acute respiratory distress syndrome and shorter hospital length of stay. Patients hospitalized during the Omicron wave had more comorbidities than in previous waves, and lower 28-day mortality than in waves 1 and 2 (adjusted OR 0.38, 95% CI 0.24-0.59; and 0.42, 95% CI 0.26-0.65) but not wave 3 (adjusted OR 0.81, 95% CI 0.43-1.51) and had less organ dysfunction than in the first 2 waves. INTERPRETATION: Patients who were at least double vaccinated had lower mortality than unvaccinated patients hospitalized during the Omicron wave. Patients hospitalized during the Omicron wave had more chronic disease and lower mortality than in the first 2 waves, but not wave 3. Changes in vaccination, treatments and predominant SARS-CoV-2 variant may have decreased mortality in patients hospitalized during the Omicron wave.

4.
CMAJ Open ; 10(2): E379-E389, 2022.
Article in English | MEDLINE | ID: mdl-35440485

ABSTRACT

BACKGROUND: There have been multiple waves in the COVID-19 pandemic in many countries. We sought to compare mortality and respiratory, cardiovascular and renal dysfunction between waves in 3 Canadian provinces. METHODS: We conducted a substudy of the ARBs CORONA I study, a multicentre Canadian pragmatic observational cohort study that examined the association of pre-existing use of angiotensin receptor blockers with outcomes in adults admitted to hospital with acute COVID-19 up to April 2021 from 9 community and teaching hospitals in 3 Canadian provinces (British Columbia, Ontario and Quebec). We excluded emergency department admissions without hospital admission, readmissions and admissions for another reason. We used logistic and 0-1-inflated ß regression models to compare 28-day and in-hospital mortality, and the use of invasive mechanical ventilation, vasopressors and renal replacement therapy (RRT) between the first 3 waves of the COVID-19 pandemic in these provinces. RESULTS: A total of 520, 572 and 245 patients in waves 1, 2 and 3, respectively, were included. Patients in wave 3 were on average younger and had fewer comorbidities than those in waves 1 and 2. The unadjusted 28-day mortality rate was significantly lower in wave 3 (7.8%) than in wave 1 (18.3%) (odds ratio [OR] 0.43, 95% confidence interval [CI] 0.24-0.78) and wave 2 (16.3%) (OR 0.46, 95% CI 0.27-0.79). After adjustment for differences in baseline characteristics, the difference in 28-day mortality remained significant (adjusted OR wave 3 v. wave 1: 0.46, 95% CI 0.26-0.81; wave 3 v. wave 2: 0.52, 95% CI 0.29-0.91). In-hospital mortality findings were similar. Use of invasive mechanical ventilation or vasopressors was less common in waves 2 and 3 than in wave 1, and use of RRT was less common in wave 3 than in wave 1. INTERPRETATION: Severity of illness decreased (lower mortality and less use of organ support) across waves among patients admitted to hospital with acute COVID-19, possibly owing to changes in patient demographic characteristics and management, such as increased use of dexamethasone. Continued application of proven therapies may further improve outcomes. STUDY REGISTRATION: ClinicalTrials.gov, no. NCT04510623.


Subject(s)
COVID-19 , Pandemics , Adult , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , British Columbia , COVID-19/epidemiology , COVID-19/therapy , Cohort Studies , Hospitals , Humans , Multiple Organ Failure , Ontario , Quebec/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL